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Abstract

To mitigate risk of climate disaster, net atmospheric release of greenhouse gases (GHGs) from

energy systems must decline to zero by mid-century. Electricity and natural gas are the most widely

used end-use energy carriers in existing infrastructure systems that deliver energy to buildings. Such

systems serve hundreds of millions of consumers in the United States and billions globally. Electricity

and natural gas suppliers are also subject to unique regulatory oversight given their status as a public

utility. While the electric power system has a reasonably clear path towards net-zero emissions, the

natural gas system lacks a diverse set of low-carbon supply options.

As energy utilities implement climate change mitigation policies, system planners require strate-

gies for achieving affordable emissions reductions. Coordinated planning of electric power and nat-

ural gas delivery systems will allow synergistic investment plans to address cross-sector operational

constraints, competing uses for net-zero emissions fuels, and shifts in final energy demands across en-

ergy carriers. In Chapter 2, we develop a novel optimization program that finds the cost-minimizing

mix of infrastructure expansion or reduction across both gas and electric systems to satisfy a se-

quence of successively tightened, sector-specific emissions constraints. Alongside conventional energy

supply resources, our framework allows for central-planning of end-use equipment stocks to allow

switching between gas and electric appliances upon failure or premature replacement. The proposed

model is used to simulate a range of case study scenarios for a benchmark 25-node gas network

coupled to a 24-node power system test network. We find that electrification of greater than 80%

of core gas demands is a component of the least-cost solution for indicative energy systems repre-

senting Mountain Northwest and Coastal Pacific climate patterns. Despite this substitution, the

gas system is maintained to provide energy to difficult-to-electrify customers and to deliver net-zero

emissions gas to electricity generators for use in times of peak net electricity demand. Restricting

electrification of gas appliances increases reliance on advanced gas technologies, such as power-to-gas

transformation, and increases annual system costs by 15% in 2040. Neglecting practical constraints

on pipeline blending of hydrogen can produce a misleading result that only transitions 20% of gas

demands to electric appliance substitutes, relying on hydrogen blend fractions of greater than 50%.

In all cases, we find average costs of delivered gas increase nearly 5-fold across the decarbonization

transition in the test system, highlighting the importance of future work to address cost-allocation
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strategies for ensuring an equitable, affordable energy transition.

The industrial sector accounts for a large share of natural gas demands and nearly a quarter of

global greenhouse gas emissions. These energy demands can be difficult to transition to electric-

powered alternatives. Methane pyrolysis could be used to produce low-carbon hydrogen (H2) for

industrial processes while generating a solid carbon product that can be permanently sequestered

or sold as a manufacturing feedstock. Chapter 3 analyzes methane pyrolysis via a molten media

that continuously catalyzes the reaction and separates the produced carbon. We perform design

optimization to evaluate the technoeconomics of this technology. We model a template small-scale

50 MW boiler (10.4 k tonne H2/year) as a base case for combustion applications, because such boilers

are particularly challenging to decarbonize (are expensive to electrify and too small-scale for post-

combustion CO2 capture and sequestration (CCS)). We find that the levelized cost of low-carbon

energy using the reactor is $11.09/MMBTU, equivalent to an abatement cost of $115/tonne CO2

avoided. In addition, we examine a policy-informed case study of H2 production at refineries subject

to the California Low Carbon Fuel Standard. In the absence of CO2 credits, the levelized cost

of hydrogen is $1.75/kg H2, but when credits are included at recent prices of $190/tonne CO2eq.,

we find a levelized cost of hydrogen as low as $0.39/kg H2. Optimization was conducted under a

range of economic sensitivities, finding that, as long as catalyst losses can be minimized, methane

pyrolysis costs could be competitive with decarbonization methods such as CCS or other low-carbon

H2 production pathways.

Accurate quantification and attribution of GHG emissions liabilities is essential for climate policy

but challenging in the case of energy transfers across regulatory jurisdictions. Regulating emissions

associated with delivered electricity is further complicated by contractual arrangements for dynamic

electricity transfer that confound emissions accounting approaches rooted in the physics of grid op-

erations. In Chapter 4, we present a two-part analysis of greenhouse gas accounting methodologies.

First, we evaluate a new methodology adopted by the California Energy Commission to calculate

the GHG emissions intensity of retail electricity providers. In the long run, the new regulations

better align with the physical nature of grid operation than did past practices, but policymakers

should monitor a set of potential challenges as market structures evolve. Second, we propose a

novel consumption-based accounting methodology to reconcile the nominal and the physical flows

of electricity from generators to consumers. We also compare capacity-factor-based and regression-

based approaches for estimating default emissions factors, in the absence of fully specified nominal

electricity flows. As a case study, we apply this approach to assess the methods by which Califor-

nia regulators quantify “specified” and “unspecified” electricity imports and their associated GHG

emissions. Collectively, these efforts illustrate principles for a comprehensive, empirical accounting

framework that could inform efforts to improve the accuracy and consistency of policies regulating

regional electricity transfers. Similar techniques will be necessary to track embodied GHG emissions

of electricity and gaseous fuel delivered in integrated gas-electric energy systems.
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Chapter 1

Introduction

1.1 Motivation

To mitigate risk of climate disaster, net atmospheric release of greenhouse gases (GHGs) must de-

cline to zero by mid-century [1, 2]. Technological and economic systems for production, conversion,

and consumption of energy account for nearly three-quarters of anthropogenic GHG emissions [3].

Therefore, large-scale mitigation of GHG emissions requires transitioning to net-zero emissions en-

ergy systems [4].

Electricity and natural gas are the most widely used end-use energy carriers in existing infrastruc-

ture systems. These systems deliver energy to buildings housing hundreds of millions of consumers in

the United States and billions globally. Given their status as public utilities and natural monopolies,

electricity and natural gas providers are also often subject to unique and comprehensive regulatory

oversight, permitting cost-of-service regulation [5] and investment planning to protect the public

interest [6, 7].

The electric power system has a clear path towards net-zero emissions by utilizing a suite of

renewable and emissions-free energy resources, ranging from wind and solar to nuclear-powered or

carbon-capture enabled electricity generators [8]. While the costs of clean electricity may be high in

some cases (e.g., when serving demand with expensive seasonal backup technologies), the technical

roadblocks are generally well understood and options exist. The natural gas system, on the other

hand, lacks a diverse set of low-carbon supply options to satisfy “direct-use” (or “core”) gas demands

in the residential, commercial, and industrial sectors (as distinguished from natural gas consumed

by electricity generators). Biogenic methane (CH4) can be produced via the anaerobic breakdown of

organic matter in landfills, wastewater treatment plants, or agricultural/livestock waste management

[9]. In addition, well-understood mechanisms for water electrolysis can be used to generate hydrogen

(H2) from clean sources of electricity, though at high cost given current technologies. Synthesizing

this H2 with carbon dioxide (CO2) of atmospheric origin enables the production of hydrocarbons

1
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with net-zero emissions on a life-cycle basis. These options are collectively called “electro-fuels”. It

is widely thought that electro-fuels production facilities will be a large source of flexible and price-

responsive demand for electricity during times of renewable over-generation (e.g., mid-day surplus

solar energy converted to H2).

Alternatively, continued use of fossil natural gas may be paired with direct carbon-capture at

the point of consumption or atmospheric carbon removal to offset the emissions. Lastly, current

natural gas demands could be transitioned to the electricity system directly by replacing gas-fired

equipment with electric alternatives. Economy-wide analyses consistently find that two core tenants

of cost-effective decarbonization include: (1) electrification of current diffuse, small-scale natural

gas direct-uses in buildings, and (2) equipping remaining large point-sources of GHG emissions with

carbon-capture technologies for permanent geologic sequestration [10].

Natural gas and electrical energy infrastructure systems have become increasingly intertwined on

operational and planning time scales [11, 12, 13], and this trend may be accelerated by the transition

to clean energy. The persistence of low-cost natural gas in North America has motivated investment

in new gas-fired generation capacity [14]. Flexible, gas-fired power plants have been essential to

balance net load1 fluctuations that arises from increasing use of variable renewable generation. This

is seen widely in the current California energy system, where high solar penetration necessitates

reliance on flexible natural gas-fired power generation to ramp as the sun sets in the evening.

Importantly, nearly all gas-sector emissions mitigation options involve direct competition with

or integration with the electric power sector. Biomethane and other sustainable biofuels are highly

valuable to zero-emissions electricity systems for providing firm2 power generation [15] and are

extremely supply-limited relative to current natural gas demands [9]. The production of electro-

fuels at scale or the removal of atmospheric carbon dioxide (i.e., direct air capture) for permanent

sequestration will require large amounts of low-cost clean electricity and heat. And widespread

electrification of current gas demands raises concerns about the cost of meeting increased electricity

demand, specifically during seasonal periods of low renewables generation or during exacerbated

peaks in demand.

Electro-fuels offer flexibility in the timing and location of electricity consumption, relative to the

demand for the final energy service. Production and transport of electro-fuels may help circumvent

transmission constraints in the electricity system. Long-duration storage of electro-fuels may help

to satisfy seasonal swings in net electricity demand [16] or serve direct-use demands that peak in the

winter. Alternatively, rather than have electro-fuel powered generators that turn on for one week

out of the year, we may plan flexible electro-fuels production facilities that shut down for the week

of scarcity (see [17] for more on these trade-offs in fixed costs and capacity utilization).

As decarbonization strategies include the transition of gas demands to the electricity system and

1Net load is equal to total demand for electricity less any available electricity generation from renewable sources
2Firm, or “dispatchable,” electricity sources are those that can be turned on to generate power when needed and

for as long as needed.
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the conversion of surplus clean electricity into gaseous fuels, new modeling techniques are required

to jointly plan for the integrated public-interest energy system of the future. Traditional energy

systems planning models focus exclusively on supply-side resources in generation and transmission

expansion optimization for a single energy infrastructure system, electricity [18] or natural gas [19].

Integrated investment planning, co-optimized across natural gas and electric power systems, is essen-

tial to jointly consider cross-sector competition for limited bio-energy resources, direct substitution

of electric appliances for legacy gas-fired equipment, or flexible production of electro-fuels for direct-

use gas demands or to generate electricity during time periods of (or in locations with) scarce wind

and solar generation. In addition, integrated gas-electric system planning is necessary to account

for the potential economic feedback associated with modeled declines in natural gas deliveries and

the impact on cost-effective investment decisions.

Maintaining redundant sets of energy infrastructure can improve system resiliency, and be highly

valuable to provide essential energy services during times of stress on the electricity system. How-

ever, if gas system deliveries decline without comparable reductions in system fixed costs, the price

per unit of gas delivered to consumers may need to increase to cover these costs. Increasing natural

gas rates may then drive further customer defections and electrification [20], causing a so-called

“rate spiral.” While the welfare-maximizing solution may entail hybrid3 reliance on a gas distri-

bution infrastructure, an unplanned transition may result in complete defection. Legacy natural

gas infrastructure, including pipelines and underground storage facilities, could become “stranded

assets.” Further, the equity impact of rate spirals presents a critical challenge for policymakers

as low-income customers may be less likely to have the capital necessary to transition away from

natural gas appliances.

Some industrial demands for natural gas for high-temperature heat are challenging to transition

to electric equipment or may be associated with process emissions such as that of cement production.

Point-source carbon capture technologies may be used to reduce the climate impact of these energy

demands. Simultaneously, consumer-driven adoption of carbon capture would support throughput

in gas systems and potentially provide an alternative avenue for recovery of fixed infrastructure costs

that mitigates a rate spiral in residential and commercial sectors.

Lastly, the investment and system design decisions determined by planning optimization tech-

niques must be implemented by market actors, subject to regulatory scrutiny. In complex networked

systems of energy transfer, electricity and gas are dynamically transferred across regulatory juris-

dictions. The nominal supply portfolio for an energy provider is the outcome of a set of financial

arrangements, contractual off-takes, and spot market transactions. However, the delivery of energy

is mediated by the nonlinear physics of energy system operation. It is a mathematical impossibility

to precisely attribute a particular generation source to any specific customer as electricity does not

3Hybrid gas-electric solutions may retain gas distribution for direct provision of energy services during times of
power system stress or failure.
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flow from a source to a sink; all generators work in concert to energize the grid and supply all de-

mands. Similarly, fuel injected to the natural gas pipeline system will quickly become well-mixed and

the molecules delivered to a particular customer bear little resemblance to the contractual arrange-

ments. The allocation of emissions liabilities across a set of regulated entities presents a challenging

computational and policy challenge - regulators must reconcile the nominal supply portfolio with

the physical emissions consequences of a regulated entity’s energy consumption.

1.2 Scope of work

The transition to net-zero emissions natural gas and electric power systems must accommodate three

parallel trends:

• increasing integration across gas and electric energy systems,

• the challenge of difficult-to-decarbonize industrial energy demands,

• the regulatory and accounting structures which track and assess their emissions liabilities or

promote the development of low-carbon resources.

The goal of this dissertation is to present new modeling frameworks that help elucidate features of

cost-effective transitions to deeply-decarbonized, integrated gas-electric energy systems. We develop

and implement three model formulations that enable design and simulation of low-carbon energy

systems, providing insight for the policy and economic decisions that will shape the transition.

The core research contributions of this work are as follows:

• Provide a comprehensive review of the current state of modeling for coordinated planning and

operations of integrated gas-electric energy systems. With the increased availability of low-cost

domestic natural gas supplies, the rise of gas-fired electricity generation has increased the in-

teractions and integration between our energy infrastructure systems. We offer an introduction

to this literature and summarize the important model innovations and short-comings.

• Develop a novel optimization program for practical least-cost planning of integrated gas-electric

systems. Regulators and utilities need new tools and techniques for ensuring a cost-effective

transition across all regulated fuels. The proposed model formulation for coordinated planning

of electric power and natural gas delivery systems will allow synergistic investment plans to

address cross-sector operational constraints, competing uses for net-zero emissions fuels, and

shifts in final energy demands across energy carriers.

• Evaluate the techno-economics of breakthrough technologies for decarbonization of industrial

energy demands. Methane pyrolysis offers one option for decarbonization of current gas end-

uses. Here, we evaluate the technoeconomic performance of a catalytic molten-media methane
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pyrolysis systems via optimization of the energy system design. Using these results, we provide

insight regarding how methane pyrolysis might compete economically with other options for

reducing industrial emissions in two specific use cases: fuel-switching at distributed medium-

scale combustion applications and substitution for conventional sources of H2 in oil refining.

• Evaluate regulatory frameworks adopted for accounting for the greenhouse gas emissions asso-

ciated with retail electricity sales. To avoid legal challenges, sub-national climate policies often

regulate the emissions intensity attribute associated with delivered retail sales of electricity. In

2020, the California Energy Commission adopted a new mathematical approach to estimating

this value in cases where a retail provider’s total purchases of electricity exceed their retail

sales. Here, we evaluate the implications of this approach relative to other options.

• Develop a harmonized approach to greenhouse gas accounting in highly integrated energy sys-

tems across regulatory jurisdictions and fuels. We adapt existing approaches to greenhouse

gas emissions accounting to reflect the nominal (or contractual) arrangements for electricity

purchases. This allows harmonized quantification of emissions associated with so-called “spec-

ified” electricity transfers, “unspecified” electricity transfers, and emissions leakage associated

with the contractual arrangement for electricity transfer from unregulated jurisdictions.

1.3 Outline

The body of this dissertation is composed of three chapters, representing three separate frameworks

for modeling decarbonized gas and electric energy systems. Each chapter presents a self-contained

analysis which either has been, or is in the process of being, published; as such, each chapter

includes its own literature review and conclusions. Each chapter also utilizes its own self-contained

nomenclature, as defined in Appendix Chapters A, B, and C.

In Chapter 2 we design and implement a least-cost system planning optimization program for

integrated gas-electric energy systems. This model incorporates elements of traditional electricity

sector capacity expansion optimization alongside decision variables for the natural gas distribution

sector, in order to identify the central planner solution under a range of sensitivity scenarios.

In Chapter 3 we conduct technoeconomic optimization and analysis of a novel technology for low-

emissions utilization of natural gas. We use technoeconomic optimization to illustrate how methane

pyrolysis in molten catalyst media bubble column reactors may be a cost-competitive option for

capture of solid carbon and production of hydrogen. A version of this work has been previously

published in [21].

In Chapter 4 we investigate novel approaches to tracking and accounting for greenhouse gas

emissions associated with dynamic transfers of electricity, reconciling the contractual portfolio of

electricity supplies with a physical interpretation of power sector operations. Approaches like this
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will be of increasing importance as contractual electricity arrangements are used also to produce

nominally net-zero emissions gaseous fuels for decarbonizing the gas distribution sector. A version

of this work has been previously published in [22] (Sect. 4.2) and [23] (Sect. 4.3).

In Chapter 5 we summarize key findings and policy implications of this body of work. We

conclude with a discussion of future research directions.
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Chapter 2

Cost-optimal planning for

integrated gas-electric grids

2.1 Introduction

Emissions of greenhouse gases (GHGs) must decrease rapidly in coming decades to mitigate the

impacts of climate change [2, 24]. The resulting decarbonized energy systems of the future will likely

rely on a mix of renewable energy, zero-emissions or carbon capture-enabled thermal generation,

energy storage, and chemical fuels such as hydrogen (H2) or synthetic methane (CH4) produced

from renewable electricity. Large investments in these technologies will be required in order to

reliably satisfy demand for electrical, thermal, and chemical energy over all hours of the year [4].

The specific mix that will prevail in the end is profoundly uncertain, and depends on a complex set

of technology characteristics, technological learning rates, and local implementation details. It is in

this fog of uncertainty that energy delivery system planners and operators (e.g., grid operators or

gas distribution system operators) are currently designing and investing in long-lived infrastructure.

Importantly, these operators cannot simply invest in a “greenfield” system that meets a mid-

century decarbonization target. An enormous set of interlinked systems already exists, and de-

liverability must be maintained across all hours during the transition. In the intervening years,

investments in emerging carbon-reducing and efficiency-promoting energy technologies will impact

the function of electricity and natural gas transmission systems. Consequently, it is critical to de-

termine investment priorities that minimize system-level infrastructure and operating costs for the

desired end system while also assuring resource adequacy and reliability during the transition.

The conceptual “energy hub” was first proposed as a framework for designing optimal greenfield

energy systems to satisfy environmental goals, unconstrained by existing infrastructure [25]. Using

well-understood mathematical models for the physics of electrical power and hydraulic gas flows [26,

7
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27], integrated energy systems optimization models were proposed for joint simulation of optimal

power flows in multi-carrier networks [28, 29, 30]. More recent efforts have included district heating

or hydrogen alongside electricity and gaseous fuels networks [31]. Such multi-carrier energy systems

will play a critical role in balancing low-carbon energy supplies and demands across sectors and

carriers [32]. However, as timelines shrink to minimize climate risks, designing and implementing a

least-cost greenfield multi-carrier energy system to achieve emissions goals becomes less feasible.

Electricity and natural gas are the most widely used energy carriers in existing infrastructure

systems. They deliver energy to buildings housing hundreds of millions of consumers in the United

States and billions globally. Natural gas and electrical energy infrastructure systems have become

increasingly intertwined on operational and planning time scales [11, 12, 13], and this trend may

be accelerated by the transition to clean energy. The persistence of low-cost natural gas in North

America has motivated investment in new gas-fired generation capacity [14], and flexible, gas-fired

power plants will be essential to balance net load fluctuations that arises from increasing use of

variable renewable generation. Climate goals in gas distribution must be satisfied by reducing the

life-cycle GHG emissions of fuels delivered. This may be accomplished by using biomethane, pipeline

blending of hydrogen, or catalytic methane production using clean electricity and captured carbon

dioxide. Alternatively, end customers will reduce their gas consumption by transitioning – at least

partially – to electric appliances. As regulators and utilities confront these trends, comprehensive

frameworks are needed for coordination of system operations and investment planning [6, 7].

In this chapter, we develop a novel mixed-integer quadratically-constrained program to fill a

practical gap in the multi-carrier energy system planning literature. The proposed framework con-

ducts multi-period system planning across integrated, gas-electric energy systems. The modeling

context is planning under strict sector-specific GHG emissions constraints that tighten over time.

We employ time series aggregation (data reduction) techniques to allow for solutions that jointly

simulate operations across representative days [33, 34]. This reduced temporal complexity allows

us to jointly consider detailed electricity sector operations constraints, nonlinear gas system steady-

state flows, and the transition of final energy demands across carriers. Such detail would not be

practical if all days in a template year or years were modeled.

Importantly, this model treats endogenous stock turnover of legacy appliance populations, allow-

ing the model to shift end use appliances between gas and electric supply networks. This appliance-

investment planning allows for joint consideration of direct electrification of current gas consumption

alongside electro-fuel (or power-to-gas) resources which decouple the timing and location of electric-

ity production from the provision of final energy services using the gas grid as a buffer. A simple

formulation for spatially-resolved hydrogen concentration tracking allows us to illustrate the critical

role of permissible gas quality on optimal decarbonization investments. A realistic implementation

of sector-specific GHG emissions constraints allows endogenous allocation of constrained resources

(such as sustainable bio-energy) across competing end-uses in the electricity and natural gas sectors.
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With the presented model and illustrative case study scenarios, we lay the groundwork for an array

of future analyses addressing critical questions of practical importance to the transition to a deeply

decarbonized energy system.

Below, we review previous studies on gas-electric system modeling, operational planning, optimal

expansion, and emissions reduction. We then outline in detail the critical gaps in previous analyses

and computational methods that this study aims to fill. In Section 2.3, we present the model

formulation for co-optimized gas-electric system planning. In Section 2.4, we describe all data

inputs and assumptions required to simulate a case study implementation of the model. In Section

2.5, we present the data inputs and assumptions for a “toy” network case study along with the

least-cost planning and operational decisions. We discuss the results, key conclusions, and areas for

further study in Section 2.7.

2.2 Background

There is a growing body of work on coordinated expansion planning and operational scheduling

optimization of integrated energy systems to generate and deliver electricity, natural gas, hydrogen,

and/or heat. For comprehensive recent reviews on this previous work, we refer the reader to He et

al. (2018) [35], Farrokhifar et al. (2020) [36], and Huang et al. (2020) [37].

Using models for co-optimized gas and electric flows, several researchers have investigated the

value of coordination and optimal control of the two integrated networks [38, 39, 40, 41]. The fidelity

of simulation used for optimizing control varies from convexified steady-state simulations [42, 43]

to transient flow models [44, 45]. Moreover, uncertainty frameworks have been proposed for the

integrated gas-electric operations optimization [46] and gas expansion planning optimization prob-

lems [47]. Several studies have analyzed whether the inclusion of power-to-gas conversion facilities

can further reduce operational costs of integrated gas-electric energy systems [48, 49, 50]. Although

studies anticipate reduced curtailment of renewables and decreased operational costs with the addi-

tion of such facilities, they do not examine whether the economic benefits exceed the capital costs

of their installation.

A related body of work has investigated coordinated expansion planning between the electric

power and natural gas systems. Expansion planning scope can include generation, transmission

[51, 52], and distribution-level decisions [53]. Bi-level optimization approaches have been used to

iteratively solve the planning and operations sub-problems in order to converge to a solution [54].

Convex relaxations have been proposed for the gas expansion planning problem [55] and implemented

for joint expansion planning of gas and power systems [56], while fully linearized approaches are

employed to solve large-scale systems [57]. Recent work has incorporated power-to-gas [58, 59,

60, 54] or combined heat and power [61] resources in integrated planning optimization. However,

many of these studies are only applicable to cases where district energy systems infrastructure
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already exists for delivery of power, gas, and heat to buildings [62, 63], irrespective of the local

conversion equipment. One study explicitly optimizes the distribution-level heat demands across

appliance technologies, but only examines new-build infrastructure decisions [64]. Planning for the

potential early retirement of legacy equipment presents an important challenge for system planners

and regulators. Further, assuming the existence or cost-effective development of an entirely new

set of networked infrastructure for energy delivery, whether it be district heat or hydrogen, is often

unrealistic in cases where legacy buildings must be transitioned to zero-carbon energy sources.

Many planning studies simulate operations for a set of independent steady-states [43] or use

clustering to reduce 8760 hourly data points in the planning year down to a tractable set of repre-

sentative hourly steady-states [60] or representative days [65]. However, these approaches typically

treat each evaluated operational period as a stand-alone simulation and not in sequence to allow for

transfer of energy across simulated hours or days. As systems rely on increasing shares of weather-

dependent renewable resources, these asynchronous developments will be critical to ensuring system

feasibility. To our knowledge there is no published global optimization formulation that enables

flexible simulation of representative time periods while retaining their sequencing in the calendar

year to allow for inter-day, inter-week, and seasonal energy storage.

The capability to tractably solve planning optimization over several sequential multi-year pe-

riods is critical for enabling realistic integrated resource planning proceedings. Researchers have

proposed various models to optimize gas-electric system planning across multiple investment peri-

ods using genetic algorithms [66], linearized expansion co-planning [53], or Bender’s decomposition

techniques [61]. However, the primary focus of these studies and others is on serving incremental

load growth across a time horizon [67, 60, 65] rather than transformative energy transition to satisfy

environmental constraints.

Carbon emissions constraints have been included in operational optimizations [68, 69] and in

multi-objective planning optimization problems [70], as components of the objective function at a

fixed cost [71, 72, 73] or as constraints subject to an emissions cap [74, 75]. Berger et al. (2020) pro-

pose a temporally resolved expansion planning model to satisfy economy-wide demands for energy

subject to carbon emissions constraints [76]. However, no transmission networks are contemplated

in that study, and final energy demands are exogenously specified, which limits the ability of their

formulation to identify and exploit synergies across gas and electricity systems or to use endogenous

appliance fuel switching as a model decision to optimally make use of renewable and gaseous fuels.

Further, implementation of such emissions-constrained optimization programs in practical policy pro-

ceedings may require moving beyond system-wide emissions constraints and towards sector-specific

accounting of GHG emissions. The goal of our study is to extend previously proposed formulations

to enable a richer variety of future scenario analyses that account for how system operations will

adjust in response to the optimized structural changes.
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In summary, our model has the following novel features not-before seen in the coordinated gas-

electric transition literature:

• Inclusion of endogenous appliance stock turnover model to address capital longevity and ex-

isting infrastructure

• Inclusion of associated building retro-fit costs to accommodate the transition of gas demands

to the electric power system

• Inclusion of endogenous fuel switching as a model decision, not as an externally-specified case

definition

• Inclusion of linking constraints across representative operational time periods to allow for

long-term storage of energy

• Inclusion of a simplified, linear gas component tracking formulation for ensuring adequate

quality delivered to consumers

• Inclusion of sector-specific emissions intensity constraints to endogenously assess cross-sector

competition for constrained net-zero emissions gas supplies

• Ex-post computation of average costs of delivered gas, electricity, and electro-fuels (as an

integrated linear system of equations) indicative of how cost-of-service regulated volumetric

rates may evolve across the transition.

2.3 Model formulation

The objective of the proposed method is to identify the cost-optimal trajectory of capacity invest-

ment decisions for a set of coupled energy infrastructures that deliver electricity and gaseous energy,

across a multi-period time horizon with progressively declining GHG emissions constraints. To

conduct integrated, multi-period gas-electric systems planning, we synthesize methods from stud-

ies on electricity sector capacity expansion modeling [77, 78], coordinated gas-electric operations

optimization [38, 56], and economy-wide decarbonization pathway simulation techniques [10, 79].

System design decisions include the expansion or retirement of electricity generators, producers of

net-zero emissions gas, and electricity or gas storage. The proposed model also endogenously models

the natural stock-rollover of end-use appliance populations, allowing for endogenous model decisions

on transitions in final energy demands across energy carriers. Each unit has an associated location

on the gas network and on the electricity grid where the unit’s net energy supplies or demands

interface with each infrastructure system and can be transferred through modeled networks of gas

pipelines and electricity transmission lines, respectively.
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For each modeled annual or multi-year investment period, the program jointly determines cost-

optimal operations of the integrated gas-electric energy system across a set of representative oper-

ational periods (i.e., days) to ensure that energy demands can be satisfied, subject to hourly oper-

ational constraints such as availability of renewable electricity generation, energy storage charging

and discharging, and generator characteristics.

The least-cost integrated system planning problem is expressed mathematically as the coordi-

nated optimization program in Eq. (2.1). The objective function sums total societal costs across all

evaluated investment periods I and their associated expansion investment costs Cexpi [$/year], the

fixed costs of transmission & distribution infrastructure Cinfi [$/year], and variable system operating

costs Copi [$/year]. All future costs are discounted to present value using ϑi, a societal cost discount

factor described in Section 2.3.8. The full problem formulation is given by:

min
∑
i∈I

ϑi(C
exp
i + Cinfi + Copi ) using (2.72), (2.64), (2.67), and (2.71)

s.t. supply/demand capacity expansion constraints: (2.5)-(2.6)

appliance turnover and replacement constraints: (2.14), (2.16)

power flow constraints: (2.18)-(2.19)

power system operating constraints: (2.20)-(2.26)

gas system operating constraints: (2.30)-(2.32), (2.40)

gas flow constraints: (2.34), (2.36), (2.38), (2.39)

gas energy balance: (2.41)-(2.47)

gas quality constraints: (2.49)-(2.50)

storage operations constraints: (2.51)-(2.59)

emissions constraints: (2.60)-(2.63)

(2.1)

In the forthcoming Sections 2.3.1-2.3.2, we present the mathematical notation employed through-

out this paper. Sections 2.3.3-2.3.7 explain the decision variables and constraints employed in Eq.

(2.1). We compute the objective function terms in Section 2.3.8. Finally, we describe model outputs

in Section 2.3.9.

2.3.1 Network topology

The network topology of an integrated gas-electric system consists of separate gas and electric

networks that interact through a limited set of coupling units that enable energy flows between the

two carriers. A schematic illustration of an integrated gas-electric network is presented in Figure

2.1.

The power grid is defined by a graph (NP , EP ) with NP = |NP | nodes denoting buses connected
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Parameterized ∀𝑒 ∈ 𝐸𝑃 or ∀𝑛 ∈ 𝑁𝑃by:

Max. power flow, P𝑒 [MW] 
Line reactance, 𝑋𝑒 [per unit]

Max. voltage angle, 𝑣𝑛 [radians]

Parameterized ∀𝑒 ∈ 𝐸𝐺 or ∀𝑛 ∈ 𝑁𝐺 by:

Pipeline diameter, 𝐷𝑒 [m] 

Pipeline length, 𝐿𝑒 [m]

Friction factor, 𝑓𝑒 [unitless]

Max. compression ratio, 𝛼𝑒 [MPaexit / MPaenter]

Max./Min. pressure, Π𝑛, Π𝑛 [MPa]

Power network nodes, 𝑁𝑃

Power network edges, 𝐸𝑃

Gas network nodes, 𝑁𝐺

Gas network edges, 𝐸𝐺

N

1
2

𝑵𝑷

21 𝑵𝑮

Figure 2.1: Schematic illustration of an integrated gas-electric energy system composed of overlaid
electric and gas networks with nodes, interconnected by edges that allow for energy transfer between
connected nodes. Each edge has an associated maximum transfer capacity, as dictated by the physical
parameters for gas pipeline and electric transmission networks.
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by EP = |EP | edges denoting power lines, and the gas pipeline network is defined by a graph (NG, EG)

with NG = |NG| nodes denoting junctions connected by EG = |EG| edges denoting pipelines. Nodal

boundaries are represented in Figure 2.1 with dashed (electric system) and dotted (gas system)

lines. Edges are presented here as bi-directional arrows, specified by an origin and a terminus node,

indicating energy transfer capabilities between the connected nodes.

These networks are defined separately, and interact through a set of energy supply and demand

units X , such as electricity generators, that are connected to an associated node on the gas network

as well as an associated node on the electric network. To facilitate matrix notation, network topology

for the electric power and gas grids are characterized by nodal-edge incidence matrices AP and AG

of dimension NP × EP and NG × EG, respectively:

Power: APn,e =

1 if edge e leaves node n

−1 if edge e enters node n
Gas: AGn,e =

1 if edge e leaves node n

−1 if edge e enters node n
(2.2)

Each column of AP and AG represents an edge, with positive and negative values indicating the

edge’s origin and terminus nodes. Consequently, each row characterizes a node, and indicates all of

the edges that nominally enter or exit that node.

Each existing or candidate resource is mapped to a node on the electricity and gas systems.

In Figure 2.2 we illustrate the sets of energy supply and demand units that may operate at each

specific node on the gas and electric system and the associated decision variables and parameters

that govern their contribution to nodal energy supplies and/or demands.

2.3.2 Temporal notation

In the presented model formulation, variables and parameters are indexed across time in three nested

timescales. We consider indexing across combinations of investment time horizons i ∈ I, representa-

tive operational periods r ∈ R, and linked operational time steps o ∈ O for each operational period.

Let us denote the sizes of these sets by I = |I|, R = |R|, and O = |O|. We use the multi-index

(i, r, o) ∈ I ×R×O, and denote T ≡ I ×R×O for ease of exposition. For specific values of i ∈ I,

r ∈ R, and o ∈ O, we will then write (i, r, o) ∈ T .

Each representative period also has an associated weight w(i,r) that reflects the proportion of

operational conditions that it represents. We use these weights to evaluate operational costs on an

annual basis, and to limit the annual availability of some supply-constrained resources.

To offer a concrete example, a case may optimize across 5 linked investment years, using 8

representative days to represent each year. Each representative day is composed of 24 hourly time

steps. In that case, I = 5, R = 8, and O = 24. The total times steps modeled is then 5 ×
8 × 24 = 960. The proposed modeling framework can flexibly accommodate different investment

periods, representative periods, and operational time steps of any length. However, for simplicity,
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demand units, 𝑋Sets 

Decision variables

Parameters

Figure 2.2: Schematic illustration of integrated gas-electric energy system nodes.

we will discuss the model formulation using investment years and representative days composed of

operational hours. This approach to time series reduction allows for large reductions in problem

complexity while retaining important operational characteristics. However, use of representative

days introduces challenges when modeling constraints or resources that bind across time horizons

that extend longer than the length of each representative day (i.e., minimum generator up- or down-

time constraints or long-duration energy storage) [34, 80].

In order to accommodate operational constraints that relate adjacent time periods, we retain the

contiguous sequencing of time periods as a sequence C of length NC = |C| that consists of elements

taken from the set R of representative time periods. We can define a projection σ : [NC ] → R,

where we use the shorthand [N ] ≡ {1, 2, . . . , N}, so that the sequence of operational periods c ∈ C
for a time horizon can be defined using representative periods according to

C = {σ(1), σ(2), ..., σ(NC)}. (2.3)

The proposed approach to time series reduction with representative periods mapped to their

contiguous sequence is presented in Figure 2.3. In this cartoon illustration, each investment year

is reduced for operational purposes to a set of representative days (denoted by color) composed of

operational hours. The representative periods are then mapped back to their original sequencing

in the calendar year based on the actual days assigned to each representative day via a clustering
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algorithm. Note that in this illustrative example, representative days are found that capture seasonal

features, differences between weekends and weekdays, and potential multi-day extreme periods.

𝑖 = 2𝑖 = 1 𝑖 = 𝐼

…

𝑟 = 1

𝑟 = 2

𝑟 = 𝑅
⋮ 𝐶

𝑜 = 1 𝑜 = 𝑂…

𝜎

M
o

n
th

s

Days

Hours

Years

Figure 2.3: Schematic illustration of time series reduction from investment years I to representative
days R composed of operational hours O. The representative periods are then cast back to their
sequence in the original calendar year C via σ.

Our approach provides the proposed model a flexible framework for experimenting with temporal

resolution. In this computational analysis, we use representative days to examine annual operations,

i.e., NC = 365. However, the framework can accommodate representative periods of any length

(number of days or hours), while preserving the calendar sequence on which constraints that relate

adjacent periods can be imposed throughout an annual or multi-year simulation horizon. The

investment years in the considered set I are associated with actual calendar years in Y . For example,

our computational case study (described in Section 2.5) tracks |I| = 5 investment time horizons

staggered at 5-year increments from a base year of 2020. Thus, the calendar years considered here

are

Y = {2020, 2025, 2030, 2035, 2040}. (2.4)

2.3.3 Design decisions

Design decision variables evaluate the expansion or retirement of units in the candidate set X ,

which includes electricity generators, electrical and gaseous energy storage, new sources of net-

zero emissions gas, i.e., biomethane and power-to-gas conversion, and end-use consumer appliances.

These decision variables are included for each modeled investment time period i ∈ I. Constraints

must be defined in order to delimit annual expansion of new units to lie between zero and a maximum

annual rate of development. In addition, we must constrain the total expansion to remain below

a maximum number of units. We also constrain the retirement of existing units to not exceed the
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number of legacy units and any previously developed units. Finally, for simplicity of exposition, we

compute the number of units in operation during a given investment year. These constraints are

given by

δi,x ≥ 0, ζi,x ≥ 0, mi,x ≥ 0 ∀i ∈ I, x ∈ X (2.5a)

δi,x ≤ δx(Yi − Yi−1), ∀i ∈ I, x ∈ X (2.5b)∑
i∈I

δi,x ≤ ∆x, ∀x ∈ X (2.5c)

ζi,x ≤ m̂x +
∑

j∈[i−1]

(δj,x − ζj,x) ∀i ∈ I, x ∈ X (2.5d)

mi,x = m̂x +
∑
j∈[i]

(δj,x − ζj,x) ∀i ∈ I, x ∈ X . (2.5e)

Here, Eq. (2.5a) introduces the decision variables for expansion δi,x [units], retirement ζi,x [units],

and existing units in operation mi,x [units] and ensures these variables take on non-negative values.

Eq. (2.5b) ensures that the expansion decision in each time period δi,x does not exceed maximum

annual expansion rates δx [units/year] multiplied by the number of years represented by the current

investment period evaluation (Yi − Yi−1)[years]. Eq. (2.5c) requires that total expansion across the

modeled investment horizon does not exceed the maximum allowable development for each candidate

set of units ∆x [units]. Eq. (2.5d) ensures that the number of units retired, ζi,x does not exceed the

number of existing legacy units, m̂x [units], plus any previously-constructed units less any previous

retirements
∑
j∈[i−1] (δj,x − ζj,x). Finally, Eq. (2.5e) evaluates the total number of units in service

mi,x in any investment period.

Note that for simplicity of exposition we use the notation j ∈ [i] as short-hand for the more

pedantic j = 1 . . . i.

When modeling investment decisions across extended time horizons, we endogenously include

any planned or expected retirements of units or appliance failures. Each class of unit included in

the set X may have a different cumulative failure function fj,x,i to describe the cumulative fraction

of units of kind x installed during investment year j that will fail before or during investment year

i. For example, electricity generators that are modeled in small populations may have their failure

or retirement modeled as a discrete occurrence at their expected lifetime. However, populations

of thousands of appliances may have their failure modeled as a continuous function with fractional

shares exiting the operating stock in between each investment year.

Here, we compute the cumulative number of expected retirements as the sum of legacy units m̂x

by the legacy unit failure function f̂i,x [cum. units failed / initial units in service] and previously

expanded units
∑
j∈[i−1] δj,x by the modeled cumulative failure function fj,x,i [cum. units failed /

initial units installed]. In every modeled investment year, the retirements in the current investment
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period must exceed those cumulative expected retirements, less any previous retirement decisions,

i.e.
∑
j∈[i−1] ζj,x. This constraint is expressed as

ζi,x ≥ m̂xf̂i,x +
∑

j∈[i−1]

δj,xfj,x,i −
∑

j∈[i−1]

ζj,x ∀i ∈ I, x ∈ X (2.6)

For units in the generators, storage, and net-zero emissions gas production sets we govern the

expected retirement using the following relationships:

f̂i,x = {1|Yi ≥ Ỹx + τx} ∀i ∈ I, x ∈ Ω ∪ S ∪ Z (2.7a)

fi,x,j = {1|Yi ≥ Yj + τx} ∀i ∈ I, x ∈ Ω ∪ S ∪ Z. (2.7b)

To endogenously evaluate the expected retirement deadlines of existing and candidate resource

expansion, we leverage the set of calendar years Y defined in Eq. (2.4). Indicator functions are

used to indicate when legacy units m̂x have reached their expected lifetime τx [years], based on

their calendar year of installation Ỹx with the expression {1|Yi ≥ Ỹx + τx}. A similar function

is used to indicate when previously expanded units δj,x have reached their expected lifetime, i.e.,

{1|Yi ≥ Yj + τx}.

These indicator functions are mathematically implemented as defined in Eq. (2.8) for two values

x and y. This expression ensures that if x is greater than or equal to y, this value equals one. If x

is less than y, this value equals zero:

{1|x ≥ y} = 1−max {min {y − x, 1}, 0} (2.8)

Another collection of constraints relates investment decisions made by direct-use gas customers

in residential, commercial, or industrial sectors. We model these decisions using a set of appliances

a ∈ A ⊂ X (each of which satisfy a particular energy end-use service u ∈ U) across the set of modeled

investment periods i ∈ I. Examples of appliances include gas furnaces, air-source heat pumps, gas-

fired or electric resistance water heaters, and gas or electric stoves. Corresponding energy end-use

services may include space heating, water heating, and cooking.

The same unit stock-tracking constraint set (Eq. (2.5)-(2.6)) is employed for the appliances

A ⊂ X , however we use different failure functions applied to legacy unit populations and expansion

decisions.

We endogenously model appliance failure fractions using the standard Poisson distribution ap-

proach, where the failure fraction is specified by the average appliance lifetime τa [years]. Cumulative
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failure fractions in each investment year i for each appliance population installed in a previous in-

vestment period j are pre-computed according to Eq. (2.9).

fi,a,j =
∑

k∈[Yi−Yj ]

e−τa
τka
k!

∀i ∈ I, a ∈ A, j ∈ I. (2.9)

Here, we sum across the failure fractions occurring in each year between the install year Yj and the

current investment year Yi using the appliance’s expected lifetime τa.

The cumulative failure fraction of the initial appliance population in each modeled investment

time period f̂i,a can be similarly pre-computed using simplified assumptions about the historical

growth rate of appliance sales ĝa [%/year] and the number of existing appliances at the beginning

of the modeled time horizon m̂a (i.e., in service during the base calendar year Ŷ ).

The appliance population size at the beginning of the modeled time horizon is assumed to be a

function of the cumulative failure (as specified by the same Poisson failure function) of all previous

appliance sales M̃a,k [units/year] (for each historical year k):

m̂a =
∑
k∈[inf]

M̃a,k

1−
∑
j∈[k]

(
e−τa

τ ja
j!

) ∀a ∈ A (2.10a)

M̃a,k =
M̂a

(1 + ĝa)k
∀k ∈ K, a ∈ A. (2.10b)

As shown above, we cast all historical sales, M̃a,k [units/year], as a function of appliance sales in

the beginning of the modeled time horizon M̂a [no. units] using an assumed historical growth rate

ĝa [%/year].

We can, therefore, substitute Eq. (2.10b) into Eq. (2.10a):

m̂a =
∑
k∈[inf]

M̂a(1 + ĝa)−k

1−
∑
j∈[k]

(
e−τa

τ ja
j!

) ∀a ∈ A. (2.11)

and rearrange the above to infer the appliance sales in the base year as solely a function of (1) an

assumed historical growth rate in sales ĝa and (2) the initial appliance population m̂a, provided that

appliance failures are characterized by a Poisson distribution:

M̂a = m̂a

∑
k∈[inf]

(1 + ĝa)k

1−
∑
j∈[k]

(
e−τa τ

j
a

j!

) ∀a ∈ A. (2.12)

We use this term to pre-compute the expected cumulative failure fraction of existing appliances f̂i,a
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on a forward-basis in every modeled investment time period:

f̂i,a = 1− 1

m̂a
M̂a

∑
k∈[inf]

(1 + ĝa)−k

1−
∑

j∈[k+(Yi−Ŷ )]

e−τa
τ ja
j!

 ∀i ∈ I, a ∈ A. (2.13)

In essence, we are dividing the existing population of appliances m̂ into a set of vintages based

on assumed prior sales, which allows us to use the same vintage tracking and failure functions for

both appliances pre-existing at the start of the simulation and those added in our investment time

periods.

Next, we add constraints that ensure that in each investment time period, and for each energy

end-use, the population of appliance units (at every node) must exceed the total demand for that

energy service. This constraint set applies across both sets of electricity and gas system nodes as

these networks may have different spatial resolution. In this manner, we ensure that, whether the

replaced appliances are fueled by gas or electricity, the same demand for energy end-use services is

met at any level of spatial granularity considered. We enforce this requirement as

∑
a∈(Au∩An)

mi,a ≥
∑

a∈(Au∩An)

m̂a(1 + gu)(Yi−Ŷ ) ∀i ∈ I, u ∈ U , n ∈ (NP ∪NG). (2.14)

Eq. (2.14) evaluates (for each investment period) the total number of appliances that can satisfy

the required energy end-use and exist at the specified node (i.e., a ∈ Au∩An). This quantity equals

the number of appliances installed and not retired in this investment year mi,a. This value must

be greater than the original number of appliances satisfying this energy service, m̂a, escalated by

an assumed growth rate in demand for this energy service gu [%/year]. The number of intervening

calendar years between each investment period is calculated using the elements of Y as originally

explained in Eq. (2.4).

Note that if a more granular population of appliances is modeled, the set of energy end-use

services U will need to be similarly expanded to differentiate across. For example, a future model

might disaggregate demand for space heating equipment in older, leakier homes vs. newer or recently

retrofitted homes. The subset of candidate appliances that can act as direct substitutes in each of

these use cases may be different, despite the fact that all appliances satisfy a “space heating” need.

For example, heat pumps may be a viable choice in newer more efficient homes but not in older

leakier homes.

To isolate the impact of co-optimized appliance-level investment planning decisions on decar-

bonization pathways, in sensitivity analysis cases we can enforce “persistence” of appliance replace-

ments by fuel type. In this circumstance, we remove the flexibility to serve demand growth and

appliance replacements with any appliance that satisfies the same energy end-use service. Instead,
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in these sensitivity cases, appliances that fail must be replaced by appliances that use the same end

fuel type (gaseous or electrical), and demand growth rates are applied uniformly across all existing

appliance populations. These requirements are given in Eq. 2.15.

mi,a ≥ m̂a(1 + gu)(Y(i)−Ŷ ) ∀a ∈ A, i ∈ I. (2.15)

Note that these constraints are only included as limited sensitivity cases, and all baseline runs

allow for end use switching between gas and electric energy carriers.

All appliance-level energy demands are modeled using parameterized hourly gas and electricity

consumption profiles ϕG(r,o),a [MW] and ϕP(r,o),a [MW], respectively. These energy demands are

incremental to a baseline of immutable temporal gas and electricity demands Φ̂G(i,r,o),n [MW] and

Φ̂P(i,r,o),n [MW], that represent any nodal energy demands that are not modeled at the appliance-

level. These quantities are related to the realized nodal gas and electricity loads ΦG(i,r,o),n [MW] and

ΦP(i,r,o),n [MW], respectively, by

ΦG(i,r,o),n = Φ̂G(i,r,o),n +
∑
a∈An

ϕG(r,o),ami,a ∀n ∈ NG, ∀(i, r, o) ∈ T , (2.16a)

ΦP(i,r,o),n = Φ̂P(i,r,o),n +
∑
a∈An

ϕP(r,o),ami,a ∀n ∈ NP , ∀(i, r, o) ∈ T . (2.16b)

We use the above Eq. (2.14)-(2.16) to explicitly model the potential transition of residential

and commercial gas demands through adoption of electric appliances for space heating, water heat-

ing, and cooking. However, the presented framework is extensible to any number of residential,

commercial, or industrial energy end-uses.

2.3.4 Power system operational decisions

Here we describe the models we use to reflect operational decision-making for electric power trans-

mission. Power system constraints are given on an hourly resolution, for 24 operational time steps

o ∈ O in each operational time period r ∈ R based on the unit commitment problem for day-ahead

scheduling. We describe the constraint set we use to represent the physics of power flow and the

engineering and operational limitations for the power grid below. We use an integer-relaxed unit

commitment and dispatch model to represent scheduled and dispatched generation or demand from

each power system resource. The set of constraints in this formulation is based on standard for-

mulations of the unit commitment problem that have been used in numerous variations [81, 82,

83].
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Power flow constraints

In steady-state, active power flow on a loss-less edge e ∈ EP directed from node n ∈ NP to m ∈ NP
is represented by a single algebraic equation, using nodal voltages Vn, Vm [kV], transmission line

reactance Xe [Ω], and nodal voltage angles vn, vm [radians]:

Pe =
|Vn||Vm|
Xe

sin(vn − vm) ∀e ∈ EP . (2.17)

In our analysis, we employ three simplifying assumptions: (1) line resistances are negligible

compared to line reactances, (2) the voltage amplitude is equal for all nodes on a per unit basis (i.e.,

|Vn| ≈ |Vm| ≈1 p.u.), and (3) the voltage angle differences between neighboring nodes are small (i.e.,

sin(vn−vm) ≈ (vn−vm)) [84]. Under these circumstances, the physical power flows on each line can

be modeled using the linearized DC power flow equations, which relate the per-unit line reactance

Xe [p.u.] and nodal voltage angles vn [rad.] to the power flow on each line Pe [MW] using a base

power P̂ = 100MW. Eq. (2.17) can be defined over the entire power network (∀e ∈ EP ) using the

incidence matrix AP . We also cast the power flow constraint set across all operational time steps

i.e., ∀(i, r, o) ∈ T :

P(i,r,o),e = P̂

(
−1

Xe

) ∑
n∈NP

APn,ev(i,r,o),n ∀(i, r, o) ∈ T , ∀e ∈ EP . (2.18)

The electrical energy balance at each node is enforced using

∑
ω∈Ωn

ΓP(i,r,o),ω −
∑
e∈EP

APn,eP(i,r,o),e +
∑

s∈SP∩Sn

(ψ−(i,r,o),s − ψ
+
(i,r,o),s)− ΦP(i,r,o),n −

∑
z∈Zn

ΦZ(i,r,o),z = 0,

∀(i, r, o) ∈ T , ∀n ∈ NP ,
(2.19)

where Zn is the set of net-zero emissions gas units at a node n ∈ NG. The above relation ensures

that the sum of local generation supplies ΓP(i,r,o),ω [MW], net electricity transfers
∑
e∈EP A

P
n,eP(i,r,o),e

[MW], and net storage discharge (ψ−(i,r,o),s − ψ
+
(i,r,o),s) [MW] matches local demands ΦP(i,r,o),n [MW]

and any demand ΦZ(i,r,o),z [MW] for production of net-zero emissions gaseous fuel. In short: supply

must match demand at the nodal level, net of transfers.

A collection of inequality constraints then delimits the engineering and operational limits of

power flow in the grid. Transmission of electric power is limited by lower and upper bounds on

power flows across each line P(i,r,o),e [MW] and voltage angle differentials v(i,r,o),n [radians], of the

form
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− P e ≤ P(i,r,o),e ≤ P e ∀(i, r, o) ∈ T , ∀e ∈ EP (2.20a)

− v ≤
∑
n∈NP

APn,ev(i,r,o),n ≤ v ∀(i, r, o) ∈ T , ∀e ∈ EP (2.20b)

Lastly, in order to ensure a unique solution, the voltage angle at a designated slack bus must be

fixed to equal 0:

v(i,r,o),0 = 0 ∀(i, r, o) ∈ T . (2.21)

Unit commitment constraints

Next, we apply constraints to control the unit-commitment and dispatch of electricity generators and

power-to-gas conversion units. The below constraints introduce these operational decision variables

and govern the amount of power generation (or demand) according to the number of units active

during each operational time step.

0 ≤ ν(i,r,o),x, ν+
(i,r,o),x, ν−(i,r,o),x ≤ mi,x ∀(i, r, o) ∈ T , ∀x ∈ Ω ∪ Z (2.22a)

ν(i,r,o),xuxΓx ≤ ΓP(i,r,o),x ≤ ν(i,r,o),xuxΓx ∀(i, r, o) ∈ T , ∀x ∈ Ω (2.22b)

ν(i,r,o),xuxΦx ≤ ΦZ(i,r,o),x ≤ ν(i,r,o),xuxΦx ∀(i, r, o) ∈ T , ∀x ∈ Z (2.22c)

ν(i,r,o),xuxγ(i,r,o),x
≤ ΓP(i,r,o),x ≤ ν(i,r,o),xuxγ(i,r,o),x ∀(i, r, o) ∈ T , ∀x ∈ Ω (2.22d)

ν(i,r,o+1),x = ν(i,r,o),x + ν+
(i,r,o),x − ν

−
(i,r,o),x ∀(i, r, o) ∈ T , ∀x ∈ Ω (2.22e)

Eq. (2.22a) introduces non-negative decision variables for units committed ν(i,r,o),x [no. units],

started up ν+
(i,r,o),x [no. units], and shut down ν−(i,r,o),x [no. units] in each operational time step.

This constraint also requires these variables to be less than or equal to the total number of units

that exist in that investment period, mi,x.

In the full integer unit-commitment model formulation, all of the above defined variables ν, ν+, ν−

would all be constrained to take on integer values (i.e., ∈ Z). Here, we relax these to continuous

variables to reduce computational burden.

In Eq. (2.22b), the power dispatch ΓP(i,r,o),x for each generator is delimited by the maximum

and minimum stable power output, Γx and Γx on a per unit [p.u.] basis, multiplied by unit size

u [MW/unit] and the number of units committed ν(i,r,o),ωunits. The dispatchable electricity demand

ΦZ(i,r,o),z for each net-zero emissions gas producer is similarly constrained in Eq. (2.22c). Eq. (2.22d)

bounds fixed profile, or non-dispatchable, generation units, such as wind and solar, by minimum and

maximum availability, γ
(i,r,o),ω

and γ(i,r,o),ω, that constrains generation on a per unit basis in each
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evaluated time point. For example, generation from a weather-dependent resource must be less than

or equal to the available power in that time step, but could go as low as zero, if curtailment is

economic. Other non-dispatchable units bound by this constraint set could include combined heat

and power facilities with a minimum amount of load during particular time steps. For conventional

thermal units with stable fuel supplies, Eq. (2.22d) will not bind output (i.e., γ
(i,r,o),ω

= 0 and

γ(i,r,o),ω = 1) and the minimum or maximum per unit output will be solely constrained by Eq.

(2.22b).

Finally Eq. (2.22e) ensures that the number of units committed in each subsequent operational

time step ν(i,r,o+1),ω is equal to the previous unit commitments ν(i,r,o),ω plus units started ν+
(i,r,o),ω,

less any units shut down ν−(i,r,o),ω.

Generator operational constraints

Next, we include maximum ramp rate constraints to bound the hourly change upward and down-

ward in output for each generator. We use the same form of these constraints as that which was

implemented in a previous study [77], given by

ΓP(i,r,o),ω − ΓP(i,r,o−1),ω ≤ uωρω(ν(i,r,o),ω − ν+
(i,r,o),ω)

. . .+ uωmin{Γω,max{Γω, ρω}}ν+
(i,r,o),ω − uωΓων

−
(i,r,o),ω ∀(i, r, o) ∈ T , ∀ω ∈ Ω, (2.23a)

ΓP(i,r,o−1),ω − ΓP(i,r,o),ω ≤ uωρω(ν(i,r,o),ω − ν+
(i,r,o),ω)

. . .+ uωmin{Γω,max{Γω, ρω}}ν−(i,r,o),ω − uωΓων
+
(i,r,o),ω ∀(i, r, o) ∈ T , ∀ω ∈ Ω. (2.23b)

In Eq. (2.23a), the maximum hourly change in generator output is bounded by the maximum ramp

rate ρω [p.u./hour] multiplied by the number of units committed and not newly started up in this

time step, i.e., ν(i,r,o),ω−ν+
(i,r,o),ω. Units that are newly started up may increase output to the greater

of their minimum stable power output Γω and their ramp rate ρω, not to exceed the maximum stable

power output Γω. Finally, any units shut down ν−(i,r,o),ω during the time step may decrease power

output from the minimum stable power output Γω to zero.

The net downward change in generation output is similarly constrained by Eq. (2.23b). Thermal

generation units typically have maximum ramp rates ρω determined by their operational characteris-

tics and flexibility to increase output on-demand, while variable renewable generation units increase

generation output with the empirical resource availability specified by γ(i,r,o),ω and described in Eq.

(2.22d) (i.e., ρω = 1).

To enforce ramp rate constraints across representative time periods, we use the set C as defined

in Eq. (2.3) to map representative time days to an appropriate sequence within a calendar year

of operations. We then apply constraints that limit the change in generation output between the

final hour of a representative day (here O, or 24 in our case for day c − 1) to the first hour of the
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subsequent day (with respect to the represented calendar sequence) (hour 1 in day c). These take

the form

ΓP(i,c,1),ω − ΓP(i,c−1,O),ω ≤ uωρω(ν(i,c,1),ω − ν+
(i,c,1),ω)

. . .+ uωmin{Γω,max{Γω, ρω}}ν+
(i,c,1),ω − uωΓων

−
(i,c,1),ω, ∀i ∈ I, ∀c ∈ C, ∀ω ∈ Ω (2.24a)

ΓP(i,c−1,O),ω − ΓP(i,c,1),ω ≤ uωρω(ν(i,c,1),ω − ν+
(i,c,1),ω)

. . .+ uωmin{Γω,max{Γω, ρω}}ν−(i,c,1),ω − uωΓων
+
(i,c,1),ω, ∀i ∈ I, ∀c ∈ C, ∀ω ∈ Ω. (2.24b)

Next, we develop a novel approach to represent constraints on the minimum up-time υ [hours]

and down-time υ [hours] for generators in adjacent representative time periods. To dynamically

accommodate minimum up- or down-times that exceed the length of multiple representative time

periods, we define two vectors:

Ỹ =

(
0︸︷︷︸

O times

1︸︷︷︸
O times

... W︸︷︷︸
O times

)
, X̃ =

(
O O − 1 ... 1

)
︸ ︷︷ ︸

W times

. (2.25)

The above vectors are used to express constraints that involve any required number of previous

time periods, depending on the relative magnitude of O and υ or υ. Ỹ dynamically identifies the

representative time period r ∈ R to which to apply the constraint, and X̃ identifies the position

o ∈ O within the representative time period. For this purpose, W ∈ N is a natural number greater

than the largest number of representative time periods required to cast the constraint across to

accommodate the up/down-time, or W ≥ max{υ,υ}
O . The minimum up- and down- time constraints

are then given by

ν(i,c,o),ω ≥
∑
k∈[υω]

ν+

i,c−Ỹk−o+O,X̃k−o+O,ω
∀(i, o),∈ (I × O) , ∀c ∈ C, (2.26a)

mi,ω − ν(i,c,o),ω ≥
∑
k∈[υω]

ν−
i,c−Ỹk−o+O,X̃k−o+O,ω

∀(i, o) ∈ (I × O) , ∀c ∈ C. (2.26b)

The minimum up-time constraint given in Eq. (2.26a) bounds the number ν of units committed in

every operational time step from below by the number ν+ of units started up across the previous υ

hourly time steps. In other words, any units that are started up must remain committed for at least υ

hourly time steps. Similarly, the minimum down-time constraint given in Eq. (2.26b) computes the

number of units offline, i.e., those not committed, in a given time step as the difference between units

that exist during this investment period, i.e., mi,x, and committed units ν. The number of units
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offline must be equal to or greater than the number of units shut-down ν− across the preceding υ

hourly time steps. Note that depending on the number and sequence of representative time periods,

some constraints specified by Eq. (2.24) and Eq. (2.26) may be identical, and could be automatically

removed from the optimization during pre-solve.

2.3.5 Gas system operational decisions

Here we describe the models we use to reflect operational decision-making for natural gas transmis-

sion. The natural gas pipeline constraints are given in steady-state for each operational time period

r ∈ R, because practical decision making for gas systems is done assuming balancing of supplies and

consumption on a daily time-scale. The compressibility of natural gas enables operations that use

“line-pack” and renders instantaneous balancing of injections into and withdrawals from a pipeline

system unnecessary. We describe the physical flow modeling as well as the engineering and operating

constraints for natural gas delivery systems below.

Gas flow constraints

We use a form of the gas flow equations taken in a previous study on integrated power and natural

gas system operations [85]. The flow of gas through a pressurized network of pipes is governed by

coupled partial differential equations for mass conservation and momentum conservation, given by:

∂Q

∂x
+

πD2

4RCH4
TZρ0

· ∂p

∂t
= 0, (2.27a)

π2D5

16fRCH4
TstdZρ2

0

· ∂p

∂x
+Q|Q| = 0. (2.27b)

In the above equations that relate pressure p and flow Q, we assume an ideal gas equation of state.

The parameters include the diameter D [m], specific gas constant for methane RCH4 [J/kg-K],

gas temperature T [◦K], gas compressibility Z, pipeline length L [m], friction factor f , standard

temperature Tstd = 300 [◦K], and gas density at standard conditions ρ0 [kg/m3]. In steady-state,

gas flow on an edge e ∈ EG directed from node n ∈ NG to m ∈ NG is then represented by a single

algebraic momentum conservation equation

Qe|Qe| =
Ke

Le
(p2
n − p2

m) where Ke =
π2D5

e

16feRCH4
TSTPZρ2

0

. (2.28)

In the above flow equation, the diameter De and friction factor fe depend on the pipeline segment

e, so that the coefficient Ke is edge dependent. The nodal pressures Pn and Pm are given in units

of Pa, and Qe is molar flow of gas in units of standard m3/s. Eq. (2.28) can be defined over the
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entire network using the incidence matrix of the graph. We also wish to reproduce the physical gas

flow constraints for all operational time periods i.e., ∀(i, r) ∈ (I ×R). Because flow is a function of

squared pressure, we can replace the term p2
n for each node n ∈ NG with squared pressure decision

variables defined as Πn in units of Pa2. We therefore use the physical flow constraint

Q(i,r),e|Q(i,r),e| = Ke

∑
n∈NG

AGn,eΠn ∀(i, r) ∈ (I ×R) , ∀e ∈ EG. (2.29)

The squared pressure variables are constrained by maximum and minimum values for each node,

Πn ≤ Π(i,r),n ≤ Πn ∀(i, r) ∈ (I ×R) , ∀n ∈ NG, (2.30)

and the gas flow rates at every evaluated time point Q(i,r),e are constrained by minimum and

maximum values for each edge according to

−Qe ≤ Q(i,r),e ≤ Qe ∀(i, r) ∈ (I ×R) , ∀e ∈ EG. (2.31)

Henceforth, we will work with the relation (2.29) for physical gas flow.

We suppose that each directed pipeline segment that is represented by an edge e ∈ EG in the

gas network may or may not have a compressor at its start node. Here, we introduce an auxiliary

pressure squared variable, Π̂(i,r),e ∀e ∈ EG, to allow for pressure boosting to occur at the start of

a pipeline. This compression pressure for each edge is constrained to be no less than the nodal

pressure Π(i,r),n at the start node, and no greater than the product of the same pressure and the

maximum compression ratio αe of this compressor. In the case where the pipeline does not possess

a compressor at its start node, the maximum compression ratio is αe = 1, so in effect the auxiliary

compression pressure variable is constrained to equal the nodal pressure at the start node. To define

the required constraints, we use indicator functions to identify the start and end nodes for each edge

using the nodal-edge incidence matrix AGn,e defined in Eq. (2.2). For an edge e ∈ EG that is directed

from start node n ∈ NG to end node m ∈ NG, the start node is identified using {1|AGn,e = 1} and

the exit node is identified using {1|AGn,e = −1}. The constraints then take the form

Π̂(i,r),e ≤ αe
∑
n∈NG

{1|AGn,e = 1}Π(i,r),n ∀(i, r) ∈ (I ×R) , ∀e ∈ EG, (2.32a)

Π̂(i,r),e ≥
∑
n∈NG

{1|AGn,e = 1}Π(i,r),n ∀(i, r) ∈ (I ×R) , ∀e ∈ EG. (2.32b)
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Generalizing the gas flow equation to apply to edges with and without compressors, the square

of the gas flow is a function of the difference between the squared pressure Π̂(i,r),e at the start node

and the squared pressure {1|AGn,e = −1}Π(i,r),n at the end node, resulting in the constraint

Q(i,r),e|Q(i,r),e| = Ke

(
Π̂(i,r),e −

∑
n∈NG

{1|AGn,e = −1}Π(i,r),n

)
∀(i, r) ∈ (I ×R) , ∀e ∈ EG.

(2.33)

Because flow directions are not known a priori, Eq. (2.33) is non-convex [51]. To handle the

non-convexity and enable the use of relaxed mixed-integer programming formulations, we introduce

binary variables y(i,r),e ∈ {0, 1} that indicate the gas flow direction relative to the nominal flow direc-

tion assigned in the nodal-branch incidence matrix AGn,e. This enables the application of disjunctive

constraints that depend on flow direction:

y(i,r),e =

1 if Q(i,r),e ≥ 0

0 otherwise
∀(i, r) ∈ (I ×R) , ∀e ∈ EG (2.34a)

(y(i,r),e − 1)Qe ≤ Q(i,r),e ≤ y(i,r),eQe ∀(i, r) ∈ (I ×R) , ∀e ∈ EG. (2.34b)

The binary variables are also included into the physical flow equation, in order to define the sign

of the pressure drop across each pipeline, relative to the nominal direction indicated in AGn,e. This

results in a straightforward, non-negative quadratic expression of gas flow:

Q2
(i,r),e= (2y(i,r),e − 1)Ke

(
Π̂(i,r),e−

∑
n∈NG

{1|AGn,e = −1}Π(i,r),n

)
∀(i, r) ∈ (I ×R) , ∀e ∈ EG

(2.35)

Furthermore, we employ a McCormick relaxation to convexify Eq. (2.35). This is a well-known

convex relaxation used by Borraz-Sanchez, et al. (2016) to represent steady-state gas flows in a

pipeline network with unknown flow directions [56].

The McCormick relaxation is used to represent a product of two variables x and y by an auxiliary

variable λ that is delimited within an envelope 〈x, y〉Mc, which is defined by a collection of inequalities

that involve the maximum and minimum possible values for x, given by x and x, as well as y, given

by y and y. The McCormick relaxation is then given by the constraint set
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λ ≤ xy + xy − xy, (2.36a)

λ ≤ xy + xy − xy, (2.36b)

λ ≥ xy + xy − xy, (2.36c)

λ ≥ xy + xy − xy, (2.36d)

which will tightly constrain λ = xy, in cases where x or y are binomial variables.

We employ the above formulation to represent the product in Eq. (2.35). Here, x = (2y(i,r),e−1)

has an upper bound of x = 1 and a lower bound x = −1.

Similarly, y =
(

Π̂(i,r),e−
∑
n∈NG

{1|AGn,e = −1}Π(i,r),n

)
has an upper bound y =

(
Π−Π

)
and

lower bound y =
(
Π−Π

)
. This fully specifies the above constraint set as defined in Eq. (2.36), and

can be used in concert with the equality constraint to represent Eq. (2.35) by the relaxed constraint

set presented in Eq. (2.37) and Eq. (2.38).

Q2
(i,r),e = Keλ(i,r),e ∀(i, r) ∈ (I×R) , ∀e ∈ EG, (2.37)

λ(i,r),e∈

〈
2y(i,r),e−1,

(
Π̂(i,r),e−

∑
n∈NG

{1|AGn,e = −1}Π(i,r),n

)〉Mc

, ∀(i, r) ∈ (I×R) , ∀e ∈ EG.

(2.38)

Applying the above approach, Eq. (2.35) can be fully convexified using Eq. (2.38) as defined by Eq.

(2.36) and by relaxing the equality in Eq. (2.37) to

Q2
(i,r),e ≤ Keλ(i,r),e ∀(i, r) ∈ (I ×R) , ∀e ∈ EG. (2.39)

The above constraints can be used in a convex quadratic programming formulation.

Lastly, to ensure a unique solution, we enforce a slack node pressure at the designated slack node

N:

Π(i,r),N = Π̃ ∀(i, r) ∈ (I ×R) (2.40)

Note that in the above mathematical formulation, we assume that (for the purposes of gas flow

simulation) the gas mixture in the pipeline will have the attributes of methane (CH4). For planning

purposes, this is an acceptable simplification to simulate the multi-component gaseous flow through
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a pipeline.

Gas energy balance

Next, we note that gaseous fuels vary in energy content depending on their molar composition.

Net-zero emissions gases, in particular, could range from synthetic natural gas drop-in substitutes

to pure hydrogen. Gas customers will have appliances and equipment tuned to operate using gas

that satisfies adopted pipeline specifications or is broadly aligned with historical deliveries. We use

the proposed model to illustrate the potential effect of gas quality or hydrogen blending constraints

on the least-cost resource expansion and system operation decisions.

In order to permit such gas quality constraints, and to approximate the flow of gases in the

networked system, we introduce a set of gas components g ∈ G each with an associated molar weight

Mg [kg/kmol] and energy content xg [MJ/kg].

Each potential source of gas in the system is parameterized by a set of mole fractions for each

component g ∈ G, for nodal fossil natural gas supplies χGn,g [%], for gas storage resources χSs,g [%],

and for net-zero emissions gas supplies χZz,g [%].

Local natural gas supplies at each node ΓG(i,r),n [MW] are assumed to be of a fixed composition

indicated by the parameters χGn,g [%]. These gas injections are constrained to remain below the

maximum local production capability or import at the boundary “slack” node Sn [MW]:

ΓG(i,r),n ≤ Sn ∀(i, r) ∈ (I ×R) , ∀n ∈ NG. (2.41)

Additionally, in order to avoid introducing component tracking for gas storage reservoirs (and the

associated computational burden), we assume that these resources charge and discharge the same

gas composition χSs,g [%] as fossil natural gas available at the slack node χGn,g [%].

Decision variables are included to track the nominal flows q(i,r),e,g [kmol/sec] and nodal off-takes

φ(i,r,o),n,g [kmol/sec] across the system. All gas component flows must be in the same direction

as the natural gas flow on each pipeline, and local gas component deliveries must be non-negative.

These constraints are specified as

(y(i,r),e − 1)Qe ≤ q(i,r),e,g ≤ y(i,r),eQe ∀(i, r) ∈ (I ×R) , ∀e ∈ EG, ∀g ∈ G (2.42a)

φ(i,r),n,g ≥ 0 ∀(i, r) ∈ (I ×R) , ∀n ∈ NG, ∀g ∈ G (2.42b)

The sum of all nominal molar gas flows q(i,r),e,g [kmol/sec] (by their molar mass Mg [kg/kmol])

must equal the total mass flow implicated by the gas flow Q(i,r),e [standard m3/sec], adjusted to

a mass-basis using the number of moles occupied by a m3 at standard conditions (Vm = 40.87

[moles/m3]) and the molar mass of methane MCH4 [kg/mole] (as this was originally employed in
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estimating the physical parameters of steady-state gas pipeline network operation):

∑
g∈G

Mgq(i,r),e,g = Q(i,r),e(MCH4
Vm), ∀(i, r) ∈ (I ×R) , ∀e ∈ EG. (2.43)

Similarly, the sum of all nominal molar gas component deliveries φ(i,r,o),n,g [kmol/sec] by their

molar mass Mg [kg/kmol] and energy content xg [MJ/kg] must equal total consumption of gaseous

energy at every node:

∑
g∈G

xgMgφ(i,r,o),n,g =

(
ΦG(i,r,o),n +

∑
ω∈ΩG∩Ωn

ηωΓP(i,r,o),ω

)
, ∀(i, r, o) ∈ T , ∀n ∈ NG. (2.44)

The total consumption is assessed as total core gas demands ΦG(i,r,o),n [MW] plus any gas used for

electricity generation ηωΓP(i,r,o),ω [MW].

A molar balance for every gas component is enforced at every gas node, accounting for local

nominal off-takes, local production, and any transfers:

χGn,g
Mnxn

ΓG(i,r),n +
∑
z∈Zn

χZz,g
Mzxz

ΓZ(i,r,o),z+

. . .
∑

s∈SG∩Sn

χSs,g
Msxs

(
ψ−(i,r,o),s − ψ

+
(i,r,o),s

)
= φ(i,r,o),n,g +

∑
e∈EG

AGn,eq(i,r),e,g,

. . . ∀(i, r, o) ∈ T , ∀g ∈ G, ∀n ∈ NG. (2.45)

where the molar weight Mz [kg/kmol] and energy content xz [MJ/kg] of gas produced by each

potential gas supply is computed using the mole fraction composition χz,g [%] as:

Mz =
∑
g∈G

Mgχz,g, ∀z ∈ Z ∪ SG ∪NG (2.46a)

xz =
∑
g∈G

xgMgχz,g, ∀z ∈ Z ∪ SG ∪NG. (2.46b)

Finally, the total energy balance is enforced at every gas node. The energy balance constraints

are defined to ensure that modeled operations are feasible in steady-state across each representative

time period (day in our case), i.e., ∀(i, r) ∈ (I ×R). Local natural gas supplies ΓG(i,r),n [MW] less

net gaseous energy outflows must be equal to the average gas demands of utility customers ΦG(i,r,o),n
[MW], generators ηωΓP(i,r,o),ω [MW] and net charging to gas storage (ψ+

(i,r,o),s−ψ
−
(i,r,o),s) [MW], less
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any local production ΓZ(i,r,o),z [MW] of net-zero emissions gases. This constraint is given by

ΓG(i,r),n −
∑
g∈G

∑
e∈EG

AGn,exgMgq(i,r),e,g −
1

O

∑
o∈O

ΦG(i,r,o),n +
∑

ω∈ΩG∩Ωn

ηωΓP(i,r,o),ω+

. . .
∑

s∈SG∩Sn

(
ψ+

(i,r,o),s − ψ
−
(i,r,o),s

)
−
∑
z∈Zn

ΓZ(i,r,o),z = 0,

∀(i, r) ∈ (I ×R) , ∀n ∈ NG. (2.47)

In Eq. (2.47), Zn denotes the set of net-zero emissions gas production units at a node n ∈ NG.

Note that differently from the electricity system, supply must equal demand in the gas system only

at the daily level, not with the hourly frequency of the electric grid energy supply-demand balance.

The modeling framework allows users to select one of three constraint formulations for ensuring

acceptable gas quality.

First, in the least-constrained case, we impose no additional restrictions on the blending of

different gas components.

Second, we impose annual, system-wide restrictions on production of gas components that may

experience infrastructural limits on blending governed by materials constraints in gas transmission,

distribution, and consumption infrastructure. This ensures, for example, that the amount of hydro-

gen delivered for consumption by the system across the modeled investment year does not exceed

the maximum mole fraction acceptable by existing infrastructure. The constraint is given as

∑
r∈R

w(i,r)

∑
o∈O

∑
n∈NG

φ(i,r,o),n,g ≤ χg
∑
r∈R

w(i,r)

∑
o∈O

∑
n∈NG

∑
h∈G

φ(i,r,o),n,h

∀i ∈ I,∀g ∈ G. (2.48)

Third, the most restrictive gas quality formulation applies gas quality constraints across every

simulated operational day, for each node and transmission pipeline.

Every nominal flow q(i,r),e,g [kmol/sec] must be constrained to abide by molar blend limitations

governed by materials considerations in transmission infrastructure.

q(i,r),e,g ≤ χg
∑
h∈G

q(i,r),e,h + (1− y(i,r),e)Qe, ∀(i, r) ∈ (I ×R) , ∀g ∈ G, ∀e ∈ EG, (2.49a)

q(i,r),e,g ≥ χg
∑
h∈G

q(i,r),e,h − y(i,r),eQe, ∀(i, r) ∈ (I ×R) , ∀g ∈ G, ∀e ∈ EG. (2.49b)

These constraints are formulated to limit the nominal molar flows q(i,r),e,g to remain below a maxi-

mum molar fraction for each component χg, applied to the sum of all nominal gas flows. Eq. (2.49a)

will bind in cases where flows are positive (i.e., y(i,r),e = 1), and Eq. (2.49b) will bind in cases where

flows are negative (i.e., y(i,r),e = 0).
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In addition, maximum and minimum heating value constraints are implemented by ensuring

that the total molar off-take at any node is within acceptable bounds, relative to the total energy

delivered:

x
∑
g∈G

Mgφ(i,r,o),n,g ≤
∑
g∈G

xgφ(i,r,o),n,g ≤ x
∑
g∈G

Mgφ(i,r,o),n,g, ∀(i, r, o) ∈ T , ∀n ∈ NG. (2.50)

The delivered amount of energy is computed as the sum of molar off-takes φ(i,r,o),n,g [kmol/sec]

multiplied by their component molar heating value xg [MJ/kmol]. Eq. (2.50) introduces minimum

x and maximum x limits on heating value of gas delivered (on a mass basis) [MJ/kg]. This constraint

applies these values to the total mass of gas delivered at each node using the molar off-takes φ(i,r,o),n,g

[kmol/sec] multiplied by their component molar mass values Mg [kg/kmol].

This simplified version of the gas quality tracking problem does not enforce mixing at every node.

However, this approach does ensure that no transmission interchange or delivered gas composition

will ever exceed the guidelines. As long as permissible blend fractions are small, we do not expect

this to meaningfully impact the physics of gas flow. Further, as long as the maximum permissible

blend fraction of hydrogen is uniform across the network, there should be no obtainable objective

function improvement by deviating from a well-mixed solution to preferentially transport hydrogen

to particular nodes on the network.

2.3.6 Energy storage operational decisions

Energy storage units can be used to balance time-varying energy supplies and demands in dynamic

systems. Historically, the natural gas industry has leveraged geologic gas storage fields to satisfy

large seasonal swings in gas demand without commensurate cycles in gas extraction and processing

[86, 87]. In the electric power sector, the majority of energy storage takes the form of hydroelectric

generators, which can capture and control geophysical flows of water with reservoirs to generate

electricity. However, increasing electricity generation from weather-dependent renewable energy

supplies will likely require a suite of new electrochemical, gravitational, or thermal energy storage

units to smooth out real-time fluctuations in generation and to shift bulk energy generation from

periods of abundance to scarcity periods on diurnal, weekly, multi-weekly, and possibly seasonal time

scales. Here, we introduce two sets of electrical and gaseous energy storage units, denoted by SP
and SG, respectively. Constraints are required to track the state of charge of each storage resource,

based on charge and discharge dispatch decisions across the simulated operational time horizon and

technology efficiency characteristics. These constraints are expressed as
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Ψ(i,r,o+1),s = Ψ(i,r,o),s + η+
s ψ

+
(i,r,o),s −

ψ−(i,r,o),s

η−s
− ηlsΨ(i,r,o),s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG,

(2.51a)

Ψ(i,r,o),s ≤ dsusmi,s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG.
(2.51b)

Eq. (2.51a) tracks the amount of energy in storage at the end of each time step Ψ(i, r, o+ 1), s by

incrementing or decrementing the state of charge Ψ(i,r,o),s from the previous time step by any charg-

ing ψ+
(i,r,o),s or discharging ψ−(i,r,o),s dispatch, adjusted by the respective charging and discharging

efficiencies η+
s , η

−
s [%]. An hourly loss rate ηls [%/hour] is also applied to the amount of energy

in storage during the previous time step (e.g., battery self-discharge). Eq. (2.51b) constrains the

amount of energy stored to not exceed the maximum energy capacity of the storage resource (i.e.,

the duration ds [hours] by the unit size us [MW/unit] by the number of units in operation during

the present investment period, given by mi,s [units].

Here, we model gas and electrical energy storage units with the same constraint set but note that

this abstracts away important transient features of gas storage operation as identified by [87]. To

conservatively model gas storage operating dynamics, we include constraints that require a constant

charge/discharge rate for the duration of each representative day:

ψ+
(i,r,o+1),s = ψ+

(i,r,o),s ∀(i, r, o) ∈ T , ∀s ∈ SG, (2.52a)

ψ−(i,r,o+1),s = ψ−(i,r,o),s ∀(i, r, o) ∈ T , ∀s ∈ SG. (2.52b)

However, more complex models for gas storage operation can be accommodated by the proposed

model formulation in future work.

A constraint set is also necessary to bound the charge and discharge capabilities based on name-

plate installed power capacity and technology efficiency characteristics (i.e., constraints on power

rates [MW], not energy [MWh]). Here, we ensure that the storage charge rate does not exceed the

permissible range, which is limited by the installed nameplate storage power capacity [MW] and the

total remaining energy capacity in the storage resource. These limits are given by

ψ+
(i,r,o),s ≤

1

η+
s
usmi,s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG, (2.53a)

ψ+
(i,r,o),s ≤ dsusmi,s −Ψ(i,r,o),s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG. (2.53b)

Installed storage power capacity is calculated in Eq. (2.53a) by applying the unit size us (in units
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of maximum instantaneous power output MWelectric for electrical storage and MWthermal for gas

storage) to the number of units in operation during the current investment time period mi,s. Eq.

(2.53b) further constrains the charging to the installed energy storage capacity. Next, we similarly

ensure that the storage discharge rate does not exceed the permissible range, which is limited by

the installed nameplate storage power capacity as well as the amount of energy in storage using the

following constraints:

ψ−(i,r,o),s ≤ η
−
s usmi,s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG, (2.54a)

ψ−(i,r,o),s ≤ Ψ(i,r,o),s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG. (2.54b)

Finally, because storage units are modeled as continuous, they may represent multiple discrete

storage units with some charging and some discharging simultaneously. As such, we must constrain

the total amount of storage power capacity used for charging and discharging simultaneously, to

ensure this value does not exceed the installed power capacity. This constraint is formulated as

1

η−s
ψ−(i,r,o),s + η+

s ψ
+
(i,r,o),s ≤ usmi,s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG. (2.55)

In deeply-decarbonized energy systems, long-duration and seasonal energy storage may also

have a role to play in managing seasonal availability of solar and wind generation [16]. However, as

described in Section 2.3.2, co-optimization of design and operational decision variables may require

simulation of operations for only a subset of representative time periods. The discrete nature of

these selected time periods generally prohibits transfer of energy between simulated representative

time periods. However, some selected periods may represent times of surplus where energy storage

units should experience net inflows of energy to be available during other represented periods during

times of scarcity.

Inspired by approaches previously described by [78, 88, 89], we include constraints to track

cumulative, sequential state of charge across the full time series using the subset of simulated,

representative time periods r ∈ R, as mapped to their sequence in a calendar year C (as described

in Eq. (2.3)). This sequential state of charge variable is defined for each storage resource as Υc,s

[MWh] by

Υc,s = Ψi,σ(1),1,s +
∑
k∈[c]

(Ψi,σ(k),O,s −Ψi,σ(k),1,s) ∀c ∈ C, ∀s ∈ SP ∪ SG. (2.56)

Here, we compute the cumulative, sequential state of charge Υc,s at the end of each operational



www.manaraa.com

36 CHAPTER 2. COST-OPTIMAL PLANNING FOR INTEGRATED GAS-ELECTRIC GRIDS

time period in the full calendar sequence of periods simulated. This value is equal to the initial

state of charge Ψi,σ(1),1,s plus the net change in energy stored (Ψi,σ(k),O,s − Ψi,σ(k),1,s) summed

across all preceding operational time periods in the calendar sequence. Recall that σ(k) indicates

the representative day r ∈ R that is associated with position k in the represented calendar sequence

C. In this way, Eq. (2.56) computes the state of charge at the transition between each representative

period in sequence.

We also include constraints to ensure storage charge and discharge behavior over the course

of each representative period would not violate maximum energy capacity when mapped to the

cumulative, sequential state of charge variable. In other words, if we were to compute Υc,s at

every operational time step, rather than at the transition between each operational time period, this

value must remain between zero and the installed storage energy capacity. We do this by including

auxiliary variables to first identify the maximum and minimum nominal states of charge, Ψ(i,r),s and

Ψ(i,r),s, respectively, which are accessed over the course of each simulated representative period:

Ψ(i,r),s ≤ Ψ(i,r,o),s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG, (2.57a)

Ψ(i,r),s ≥ Ψ(i,r,o),s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG. (2.57b)

Next, we implement constraints on Υc,s to delimit its value to the permissible range, using the

difference between the nominal initial storage state of charge Ψi,σ(c+1),1,s and the maximum and

minimum states accessed:

Υc,s + (Ψi,σ(c+1),s −Ψi,σ(c+1),1,s) ≤ dsusmi,s ∀c ∈ C, ∀s ∈ SP ∪ SG, (2.58a)

Υc,s − (Ψi,σ(c+1),1,s −Ψi,σ(c+1),s) ≥ 0 ∀c ∈ C, ∀s ∈ SP ∪ SG. (2.58b)

In Eq. (2.58a), the cumulative, sequential state of charge, plus any deviation to the maximum nomi-

nal state of charge accessed across the following representative period (i.e., Ψi,σ(c+1),s−Ψi,σ(c+1),1,s)

must not exceed the installed storage energy capacity. Here, again, the total energy capacity is cal-

culated by multiplying the storage duration ds by unit size us and by the cumulative number of

installed (and not retired) units i.e., mi,s. Similarly, in Eq. (2.58b), Υc,s, less the deviation to the

minimum nominal state of charge accessed over the course of the following representative period

(i.e., Ψi,σ(c+1),1,s −Ψi,σ(c+1),s), must remain non-negative.

Finally, we apply periodicity constraints to ensure that the final cumulative, sequential state of

charge Ψ‖C‖,s is greater than or equal to the initial energy in storage ∆i,σ(1),1,s. This constraint

applies for each modeled investment year. This requirement is
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Υ‖C‖,s ≥ Ψi,σ(1),1,s ∀(i, r, o) ∈ T , ∀s ∈ SP ∪ SG. (2.59)

2.3.7 Policy and economic constraints

In addition to constraints on energy network operations and design, which have been examined

in various optimization formulations in previous studies, here we include constraints that reflect

specific policies and regulations that may arise in future scenarios. Gas and electric utilities may be

subjected to unique GHG accounting conventions and regulatory constraints. The relative scope,

magnitude, and pace of these environmental targets may govern the least-cost investment strategy.

In the proposed model formulation, constraints on GHG emissions are included separately for the

electricity sector β
P

i and gas sector β
G

i on an emissions-intensity basis, in terms of net GHG emissions

per unit of energy delivered [ tCO2e
MWh ].

Electric power entities are liable for all emissions associated with generation of electricity, less

any net-zero emissions gas that is procured by electricity sector entities. Gas sector entities are liable

only for the emissions associated with combustion of natural gas distributed to serve direct-use gas

demands.

This constraint set evaluates these criteria over entire investment periods, and is formulated as

∑
r∈R

∑
o∈O

∑
ω∈Ω

w(i,r)Γ
P
(i,r,o),ωηωβω − β

GξPi ≤ β
P

i

∑
r∈R

∑
o∈O

∑
ω∈Ω

w(i,r)Γ
P
(i,r,o),ω + εPi

∀i ∈ I, (2.60a)

βG

(∑
r∈R

∑
o∈O

∑
n∈NG

w(i,r)Φ
G
(i,r,o),n − ξ

G
i

)
≤ βGi

∑
r∈R

∑
o∈O

∑
n∈NG

w(i,r)Φ
G
(i,r,o),n + εGi

∀i ∈ I. (2.60b)

Emissions from electricity generation are assessed using generator output ΓP(i,r,o),ω [MWh/hr],

heat rate ηω [MMBtu/MWh], and fuel emissions factor βω [kg CO2e/MMBtu]. Nominal allocation

of net-zero emissions gas production ξPi [MWh/year] can be used to offset some of the emissions

of gas use in generation at the emissions factor of natural gas βG [kg CO2e/MWh]. The emissions

intensity for electricity is assessed with respect to total generation (including electricity used to

produce electro-fuels such as electrolytic hydrogen or electro-methane) and must remain below the

constraint for the investment time period β
P

i [kg CO2e/MWh], plus any negative emissions offsets

εPi [kg CO2e/year].



www.manaraa.com

38 CHAPTER 2. COST-OPTIMAL PLANNING FOR INTEGRATED GAS-ELECTRIC GRIDS

Gas sector entities are liable for the emissions associated with combustion of natural gas dis-

tributed to serve direct-use gas demands ΦG(i,r,o),n [MWh/hr], assessed at the emissions factor of natu-

ral gas βG [kg CO2e/MWh], less any gas sector net-zero emissions gas procurements ξGi [MWh/year].

Any emissions from natural gas used for electricity generation are accounted for on the power sector

constraint (Eq. (2.60a)). The emissions intensity of the delivered portfolio is assessed with respect

to the core gas demands served and must not exceed the maximum allowable emissions intensity

for each investment period β
G

i [kg CO2e/MWh], plus any negative emissions offsets or atmospheric

carbon removal εGi [kg CO2e/year].

As discussed above, slack variables are included to allow for violation of this constraint set at

a fixed cost in the objective function for the power sector εPi and the gas sector εGi . This model

feature can be used for a range of sensitivity testing and allows for emissions costing representative

of either negative emissions technologies for atmospheric carbon removal, a social cost of carbon, or a

prohibitively high value to allow model feasibility under scenarios where emissions constraints would

make the problem infeasible. For simplicity of explanation, we will refer to these slack variables as

use of negative emissions technologies for atmospheric carbon removal.

εPi ≥ 0, εGi ≥ 0 ∀i ∈ I (2.61a)

εPi ≤ εi
∑
r∈R

∑
o∈O

∑
ω∈Ω

w(i,r)Γ
P
(i,r,o),ωηωβω ∀i ∈ I (2.61b)

εGi ≤ εiβG
∑
r∈R

∑
o∈O

∑
n∈NG

w(i,r)Φ
G
(i,r,o),n ∀i ∈ I (2.61c)

In Eq. (2.61), the use of negative emissions offsets in each sector is constrained by a maximum share

εi [%] of gross emissions liabilities. For the electric power sector, this is equal to the gross sum of

emissions from electricity generators. For the gas sector, this is equal to the total gas deliveries

ΦG(i,r,o),n [MWh] by the emissions factor for natural gas βG [kg CO2/MWh].

To support the allocation of emissions liabilities across energy systems, total net-zero emissions

fuel production must be nominally allocated to either gas or electricity sector entities to offset

emissions liabilities resulting from gaseous fuel combustion. This is stipulated by the following

constraints:

ξGi ≥ 0, ξPi ≥ 0 ∀i ∈ I, (2.62a)

ξGi + ξPi ≤
∑
r∈R

∑
o∈O

∑
z∈Z

w(i,r)Γ
Z
(i,r,o),z ∀i ∈ I, (2.62b)

ξPi ≤
∑
r∈R

∑
o∈O

∑
ω∈ΩG

w(i,r)Γ
P
(i,r,o),ωηω ∀i ∈ I, (2.62c)

ξGi ≤
∑
r∈R

∑
o∈O

∑
n∈NG

w(i,r)Φ
G
(i,r,o),n ∀i ∈ I. (2.62d)
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Eq. (2.62a) introduces two non-negative decision variables for nominal allocation of net-zero emis-

sions fuel use to the electricity and the gas sectors, denoted by ξPi and ξGi , respectively. Eq. (2.62b)

constrains the sum of allocations to remain below total net-zero emissions fuel production ΓZ(i,r,o),z.

Eq. (2.62c) ensures electricity sector allocation ξPi [MWh/year] does not exceed use in gas-fired

generators ΩG ⊂ Ω, and Eq. (2.62d) requires that gas sector allocation ξGi [MWh/year] does not

exceed the endogenously assessed gas demands served ΦG(i,r,o),n [MWh/year].

In addition to constraints on the rate of expansion included in Eq. (2.5), some bio-energy

resources may experience economic limitations on annual supply because of competition with non-

modeled end-uses such as liquid fuels for transportation. We include such constraints on biomethane

facilities (z ∈ Zb) to limit total annual biomethane use to an assumed maximum availability b

[MWh/year], using equation

∑
r∈R

∑
o∈O

∑
z∈Zb

w(i,r)Γ
Z
(i,r,o),z ≤ B ∀i ∈ I. (2.63)

2.3.8 Objective function

The objective function to be minimized in multi-period system planning is equal to the sum of the

fixed costs of investment, the fixed costs of incremental transmission and distribution infrastructure,

and the variable costs of system operation.

Fixed investment costs

The fixed investment costs are computed by summing the annualized fixed costs for the integrated

energy system, given by

Cexpi =
∑
x∈X

∑
j∈[i]

(
κx(Ccapj,x δj,x + Cbj,x){1|Yi ≤ Yj + τx}

)
+ CFOMi,x mi,x ∀i ∈ I. (2.64)

This term includes the annualized capital costs of expanded units Ccapj,x , the fixed operations and

maintenance costs CFOMi,x . Note that the annualized capital cost of unit expansion are included

in Cexpi for all investment periods across the duration of the developed unit’s expected lifetime τx

[years].

Here, we include the customer costs of any building infrastructure upgrades required to accommo-

date the transition to electric appliances Cbi,a [$] (e.g., meter or electrical panel upgrades, re-wiring,

or building envelope retrofits). These costs are incurred only upon the first installation of a new piece

of equipment and not on replacement investment decisions. As such, this is a variable bound below

by the number of new installs that do not represent replacement of incremental appliance-failures
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occurring across from the previous investment year.

Cbi,a ≥ 0 ∀i ∈ I,∀a ∈ A. (2.65a)

Cbi,a ≥ cbi,a

δi,a − ∑
j∈[i−1]

(fi,a,j − fi−1,a,j)δj,a

 ∀i ∈ I,∀a ∈ A. (2.65b)

The new appliance sales δi,a are adjusted downward by the number of new sales that may

represent like-for-like replacements based on the failures of previously installed appliances of this

kind. We sum across all previous investment years and take the difference between the cumulative

failure fraction in the current investment year fi,a,j and that of the preceding investment year fi−1,a,j

and assume that this quantity of new appliance sales would not require the associated building

infrastructure costs cbi,a [$/unit] having already incurred this cost in a previous modeled investment

year.

Here, we also use a capital recovery factor κx [year−1]. Capital recovery factors are calculated

for each resource using the economic lifetime τx and a weighted average cost of capital ιWACC :

κx =
ιWACC(1 + ιWACC)τx

(1 + ιWACC)τx − 1
∀x ∈ X (2.66)

Fixed infrastructure costs

Planning and operational decisions may incur fixed transmission and distribution infrastructure

costs. We compute the fixed infrastructure costs,

Cinfi = Cpeak
∑
n∈NP

(Φ
P

i,n −max(r,o)Φ̂
P
(i,r,o),n) +

∑
n∈NG

Cdistn ∀i ∈ I, (2.67)

as the sum of fixed re-investment and maintenance costs for electricity and gas transmission and

distribution systems. Here, we use an assumed cost of distribution infrastructure Cpeak [$/MW-yr]

that scales with the peak electricity demand of the system. The peak hourly demand at the nodal

level Φ
P

i,n [MW] is the maximum of all modeled temporal demands ΦP(i,r,o),n, and satisfies

Φ
P

i,n ≥ ΦP(i,r,o),n ∀(i, r, o) ∈ T , n ∈ NP . (2.68)

The cost of gas distribution system maintenance and operations Cdistn [$/yr] is also included for each

node and scales with the number of residential or commercial customers served at that node.

In sensitivity scenarios where gas distribution retirement is permitted, we introduce a binary
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variable for each distribution node to indicate whether this node is delivering gas to distribution-

level customers:

ζi,n ∈ {0, 1} ∀i ∈ I, ∀n ∈ NG (2.69a)

(1− ζi,n)M ≥
∑
a∈An

ϕG(r,o),ami,a ∀i ∈ I, ∀n ∈ NG. (2.69b)

This indicator variable ζi,n may take on a value of 1 if and only if the appliance-level gas demands

at a node are equal to zero. Note that this does not include any baseline gas demands assumed to

occur at the transmission-level. For this model functionality to reflect reality, all distribution-level

gas demands must be modeled at the appliance-level.

In these cases, the gas distribution retirement variables ζi,n are also included in the calculation

of fixed infrastructure costs:

Cinfi = Cpeak
∑
n∈NP

(Φ
P

i,n −max(r,o)Φ̂
P
(i,r,o),n) +

∑
n∈NG

(1− ζi,n)Cdistn ∀i ∈ I. (2.70)

We must note that the current formulation does not include any costs associated with decom-

missioning existing gas distribution infrastructure. However, future iterations of this work may

incorporate this feature using the gas system shut-down indicator variable ζi,n.

Operational costs

Eq. (2.71) assesses the annual variable costs Copi [$/year] for the set of simulated operations, using

the representative weight of each representative time period, w(i,r). The cost of operation includes

the costs of serving core gas demands ΦG(i,r,o),n with natural gas at commodity costs CGi [$/MWh],

the fuel costs Cfueli,ω [$/MMBtu] of generation units and variable costs of operation CV OMi,x [$/MWh]

of generators and net-zero emissions fuel production units incurred across simulated operational time

steps. Here, some of the assessed costs of commodity gas are offset by nominal allocation of net-zero

emissions fuel production (i.e., ξPi + ξGi ). Finally, we also include the cost of negative emissions to

offset CO2 emissions exceeding the sector-specific constraint assessed at a penalty of CCO2
i [$/kg

CO2]. The resulting expression is

Copi =
∑
r∈R

∑
o∈O

w(i,r)

∑
n∈NG

CGi ΦG(i,r,o),n +
∑
z∈Z

CV OMi,z ΓZ(i,r,o),z

. . .+
∑
ω∈Ω

(Cfueli,ω ηω + CV OMi,ω )ΓP(i,r,o),ω − C
G
i (ξPi + ξGi ) + CCO2

i (εGi + εPi ) ∀i ∈ I. (2.71)
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Present value discounting

When evaluating the objective function over investment periods that span multiple decades, we

apply a discounting factor d that represents the societal value of delaying costs. In other words, this

can be thought of as the risk-less rate of return available to capital at the societal level, ιsoc. The

discount factor for each investment period is given by:

ϑi =
∑

j∈[Yi+1−Yi]

1

(1 + ιsoc)(Yi+j−Ỹ )
∀i ∈ I. (2.72)

Here, we assume that each simulated investment period is representative of the annual costs of each

calendar year until the following investment period simulation.

2.3.9 Model outputs

Model outputs allow for comparison across sensitivity scenarios and regional case studies to explore

features of least-cost transitions in integrated gas-electric energy systems. Outputs of the proposed

model include the investment and operational decision variables, total system costs, and the average

costs of energy.

Investment and operational decisions

Capacity investment decisions are the primary model output, providing insight into the least-cost mix

of energy supply and demand units to satisfy an emissions constraint trajectory. These investment

decisions include the timing and location of infrastructure expansion and retirement decisions for

electricity generators, net-zero emissions gas production units, energy storage technologies, and

consumer appliances.

Optimal system operations decisions also lend insight regarding the implications of a cost-effective

transition to deeply decarbonized systems. Total annual electricity generation by fuel type and

generation curtailment values are identified across the modeled time horizon. In addition, the model

outputs the composition of gaseous fuel resources used to serve core gas demands or to fuel gas-fired

electricity generators. The share of net-zero emissions gas that is directed for nominal consumption

in the gas sector and the electricity sector to satisfy sector-specific emissions constraints.

In addition to annual metrics, operational patterns may be visualized for electricity grid dispatch

during specific days or weeks of operation. Of particular interest are the weeks of the year with peak

total electricity demand and peak net electricity demand (after subtracting available renewable en-

ergy generation) as these periods stress the system. In the integrated gas-electric system operations,

we also observe particular times when remaining core gas demands are largest as these may offer

directional insight regarding appliance electrification decisions.
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Total system costs

Total system costs can be accessed on an annualized basis for each modeled investment year, by tech-

nology or location using the unit-specific expansion, retirement, and operations decisions. Annual

total system costs can be partitioned by sector-specific components including electricity genera-

tion, storage, transmission & distribution, net-zero emissions gas production, gas transmission &

distribution infrastructure, and customer appliance investments.

The electric power sector costs are partitioned across generation capacity costs Cgen.,Pi , fuel

costs Cfuel,Pi , costs of electrical storage Cstor.,Pi , and transmission and distribution infrastructure

CT&D.,P
i as presented in Eq. (2.73).

Cgen.,Pi =
∑
j∈[i]

∑
x∈Ω

κxC
cap
j,x δj,x{1|Yi ≤ Yj + τx}+ CFOMi,x mi,x ∀i ∈ I (2.73a)

Cfuel,Pi =
∑
r∈R

∑
o∈O

w(i,r)

∑
ω∈Ω

(Cfueli,ω ηω + CV OMi,ω )ΓP(i,r,o),ω − C
G
i ξ

P
i ∀i ∈ I (2.73b)

Cstor.,Pi =
∑
j∈[i]

∑
x∈SP

κxC
cap
j,x δj,x{1|Yi ≤ Yj + τx}+ CFOMi,x mi,x ∀i ∈ I (2.73c)

CT&D.,P
i = Cpeak

∑
n∈NP

(Φ
P

i,n −max(r,o)Φ̂
P
(i,r,o),n) ∀i ∈ I. (2.73d)

The gas sector costs are partitioned across the costs of net-zero gas generation units Cgen.,Gi ,

commodity fuel costs of natural gas for core demands Cfuel,Gi , investment and operating costs of

gas storage units Cstor,Gi , and transmission and distribution infrastructure CT&D.,G
i . These compu-

tations are presented in Eq. (2.74).

Cgen.,Gi =
∑
z∈Z

∑
j∈[i]

κzC
cap
j,z δj,z{1|Yi ≤ Yj + τx}+ CFOMi,z mi,z

. . .+
∑
r∈R

∑
o∈O

w(i,r)

∑
z∈Z

CV OMi,z ΓZ(i,r,o),z ∀i ∈ I (2.74a)

Cfuel,Gi =
∑
r∈R

∑
o∈O

∑
n∈NG

w(i,r)C
G
i ΦG(i,r,o),n − C

G
i ξ

G
i ∀i ∈ I (2.74b)

Cstor,Gi =
∑
j∈[i]

∑
x∈SG

κxC
cap
j,x δj,x{1|Yi ≤ Yj + τx}+ CFOMi,x mi,x ∀i ∈ I (2.74c)

CT&D.,G
i =

∑
n∈NG

(1− ζi,n)Cdistn ∀i ∈ I. (2.74d)

The costs of customer appliance investments are calculated in a similar manner, summing capital

investment in appliances:

Cappsi =
∑
j∈[i]

∑
x∈A

κx(Ccapj,x δj,x + Cbj,x){1|Yi ≤ Yj + τx} ∀i ∈ I. (2.75)
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Lastly, we include the cost of any GHG emissions that exceed the permitted emissions intensity

for gas and electric power entities CNETsi assessed at a cost representing the cost of negative emissions

offsets for carbon removal or the social cost of carbon.

CNETsi = CCO2
i (εGi + εPi ) ∀i ∈ I (2.76)

Note that these are coarse representations of system costs and do not account for the interactive

effects to avoid double-counting any costs. For example, the fuel costs of generators do not include

the cost of net-zero emissions gas as these are included in a separate tranche of system costs.

Average costs of energy

The model also computes the average cost of delivered energy for both the gas and electric sectors.

This metric offers a first-order estimate of how volumetric energy rates may evolve across the modeled

investment horizon. However, this computation requires assumptions regarding the share of cross-

sector investments (i.e., net-zero emissions fuels) that may be borne by ratepayers of each energy

system. In this work, investment and operating costs of net-zero emissions fuel production units

are amortized across total production of net-zero emissions gas. Any electricity consumption to

generate electro-fuels is assessed at the average cost of delivered electricity. This average cost of

net-zero emissions gas is allocated proportionately to the gas and electricity revenue requirements

according to the nominal share of net-zero emissions gas production assigned to each entity in the

computation of sector-specific emissions liabilities.

For simplicity of exposition, we introduce quantities for total annual generation of electrical

power ΓPi [MWh/year], deliveries of gas ΦG
i [MWh/year], production of net-zero emissions gas ΓZi

[MWh/year] and consumption of electric power for production of electro-fuels ΦZ
i [MWh/year]:

ΓPi =
∑
r∈R

∑
o∈O

∑
ω∈Ω

w(i,r)Γ
P
(i,r,o),ω ∀i ∈ I (2.77a)

ΦG
i =

∑
r∈R

∑
o∈O

∑
n∈NG

w(i,r)Φ
G
(i,r,o),n ∀i ∈ I (2.77b)

ΓZi =
∑
z∈Z

∑
r∈R

∑
o∈O

w(i,r)Γ
Z
(i,r,o),z ∀i ∈ I (2.77c)

ΦZ
i =

∑
r∈R

∑
o∈O

∑
z∈Z

w(i,r)Φ
Z
(i,r,o),z ∀i ∈ I (2.77d)

Using the total societal cost terms defined in Eq. (2.73) - (2.74), we define the average costs

of delivered electric power µPi [$/MWh] and gas µGi [$/MWh] as a function of the average cost of
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net-zero emissions gas production µZi [$/MWh].

µPi =
Cgen,Pi + Cfuel,Pi + Cstor,Pi + CT&D,P

i + CCO2
i εPi + ξPi (µZi − CGi )

ΓPi
∀i ∈ I (2.78a)

µZi =
Cgen,Gi + ΦZ

i µ
P
i

ΓZi
∀i ∈ I (2.78b)

µGi =
Cfuel,Gi + Cstor,Gi + CT&D,G

i + CCO2
i εGi + ξGi (µZi − CGi )

ΦG
i

∀i ∈ I (2.78c)

The average cost of electric power µPi is estimated in Eq. (2.78a) to be the sum of variable

operating costs Cfuel,Pi , negative emissions offsets CCO2
i εPi , and the incremental cost of net-zero

emissions gas purchases ξPi , assessed at the average cost of net-zero emissions gas production µZi ,

relative to the cost of commodity gas CGi already included in Cfuel,Pi . These costs are then levelized

across total electricity generation ΓPi .

The cost of net-zero emissions gas µZi is then cast in Eq. (2.78b) as a function of electric

power costs µPi . The cost of net-zero emissions gas is equal to the sum of capital investments and

operating costs of net-zero emissions production Cgen,G and the costs of all electric power inputs ΦZ
i

(as assessed at the average cost of electricity). These costs are levelized across the total production

of net-zero emissions gas ΓZi .

The average costs of gas delivered µGi can be straightforwardly computed in Eq. (2.78c) using

the fuel costs of commodity natural gas to serve core demands Cfuel,Gi , the costs of gas storage

Cstor,Gi , the costs of distribution infrastructure CT&D,G
i and the costs of negative emissions offsets

for the gas sector CCO2
i εGi . In addition, the gas sector purchases of net-zero emissions gas ξGi are

assessed at the incremental cost of net-zero emissions gas µZi relative to commodity gas costs CGi .

These costs are levelized for recovery across all core gas demands served ΦG
i .

The term in Eq. (2.78b) is substituted in Eq. (2.78a) to compute the value of µPi in closed form.

Subsequently, the average cost of net-zero emissions gas µZi can be computed using Eq. (2.78b) and

the value of µPi . Finally, the average cost of gas delivered µGi can be computed using Eq. (2.78c)

and the value of µZi .

The above equations are solved ex-post after system optimization to assess how average costs of

delivered energy could evolve across the transition. An alternative approach where net-zero emissions

gas production units are exposed to the wholesale cost of electricity (estimated as the variable cost

of generation) rather than the average cost of delivered electricity is presented in Appendix Section

A.5.

Note that while all costs are included in the societal cost objective function (and the total system

cost model outputs presented in Section 2.3.9), appliance costs are excluded from the average cost of

energy calculations outlined in Eq. (2.78). The cost of appliances and associated building retro-fits

are borne directly by the customer and not included in the revenue requirement for an energy utility.
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However, future work may also account for utility subsidies for appliance investments or the required

building upgrades in the computation of average rates.

These results are key to interpreting the economic implications and feasibility of the identified

least-cost transition pathways. The optimal transition trajectory may include a small amount of gas

consumption spread across customers with particular system costs associated with their transition

to electricity. However, the distribution of such costs across ratepayers will determine the stability

of this solution. A welfare-maximizing actor may electrify their gas demands, regardless of the

associated system costs incurred by electricity providers, especially if tariff designs do not adequately

pass marginal system cost impacts onto consumers.
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2.4 Data & assumptions

To solve the above optimization program for realistic case studies, a range of input data and as-

sumptions are required. Section 2.4.1 describes data and assumptions for any existing or candidate

energy demands. Section 2.4.2 presents all data inputs for existing and candidate supplies of gaseous

and electrical energy. Section 2.4.3 describes the required data and assumptions to specify a gaseous

or electrical energy storage unit. In Section 2.4.4, we discuss the data required to fully specify

the gas and electricity network configurations and the associated infrastructure costs. Section 2.4.5

describes the assumptions required for policy constraints. In Section 2.4.6 we discuss the assumed

parameters for discounting costs to present value in the model.

2.4.1 Energy demand

Hourly demands for gas and electricity are modeled at each node in the system. The total energy

demanded at each location and each time point includes a set of modeled appliance-level demands

and a baseline of immutable energy demands.

Baseline energy demands

Each baseline nodal energy demand for gas or electricity will have associated attributes including

a peak hourly demand [MW], total annual energy demand [MWh/year] (also expressed as average

energy demand [MWa]), and a temporal profile.

For electricity demands, plausible shapes and quantities can be generated using historical data

from grid operators [90, 91] or from bottom-up simulations of electricity demands [92, 93]. In

this work, we use state-level electricity demand simulations generated by NREL’s Electrification

Futures Study (EFS) [93]. NREL’s EFS employs the Demand Side Grid Model (dsgrid) to complete

detailed bottom-up simulations of electricity demand under different appliance adoption scenarios

for transitioning gas demands to the electricity system. Reference scenario simulations for the base

year 2018 are used to represent the shape of current electricity demands in various geographies and

climate zones across the United States.

For indicative case study simulations, it may be useful to normalize electricity demands of the

template system to allow for generalized comparison across regions. Baseline energy demand profiles

may be normalized to the maximum hourly electricity demand or to the average hourly electricity

demand such that the hour-to-hour shape of electricity demand can be retained and applied to

various case study systems that range in size.

Empirical data on hourly gas consumption is often not recorded or made public. Baseline pro-

files for gas demand could be constructed from bottom-up aggregation of simulated equipment-level

demands [92]. Alternatively, baseline gas demands can be modeled as constant demands, represen-

tative of gas consumption at large commercial or industrial facilities with high capacity utilization
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factors.

Appliance energy demands

Appliance-level energy demands are modeled for a subset of gas and electricity final energy de-

mands. Each modeled appliance requires an assumed hourly gas and electricity consumption profile

[MWh/hour], capital cost [$], and costs of any necessary building upgrades associated with the in-

stallation of the appliance [$]. For specific case studies, these appliance populations will also be

specified by their total initial values [no. units], historical sales growth rates [%/year], and location

at a gas node and an electric node. The realistic appliance population in a modeled region will be

incredibly diverse. For the purposes of model demonstration, we abstract appliances to indicative

templates. Legacy end-use appliances modeled in this work include residential and commercial gas

furnaces, gas water heaters, and gas cooking. Candidate appliances include air-source heat pumps

for space heating, heat pump water heaters, and electric cooking alternatives.

To generate plausible assumptions for hourly appliance energy demand, we first estimate the

energy required to satisfy the demand for the provided end-use energy service on an annual basis.

Second, these annual energy demands are down-scaled to hourly values that capture temporal trends

in demand for energy services as well as potential temporal variations in appliance efficiency as a

function of ambient temperature.

In order to ensure consistency across substitutable gas and electric appliances, we benchmark

the annual demand for energy services using the EIA’s Residential Energy Consumption Survey

(RECS) and Commercial Building Energy Consumption Survey (CBECS) data for gas demand. For

residential appliances, average site energy consumption by census region and division (Table CE5.4

[94]) is used to estimate average annual gas consumption for the listed energy end-uses (space heating,

water heating, and cooking). For commercial appliances, we use natural gas energy intensity by end-

use [MMBtu/ft2] (Table E7 [95]) paired with an assumed median building floor area [ft2] (Table B2

[95]). Next, using an assumed average seasonal efficiency of the gas-fired equipment serving each

end-use, we estimate the annual demand for energy services. Finally, an average seasonal efficiency

assumption for the substitute electric equipment is applied to this demand for energy services to

estimate the corresponding annual demand for each modeled electric appliance that may displace a

gas-fired unit.

For space heating, gas furnace efficiency will vary depending on the vintage and technology of the

appliance. Gas furnace efficiency can range from 62% to over 90% in the most efficient condensing

furnace technologies [96]. Electric heat pumps can allow for energy efficiencies in excess of 100%

as they use electricity to move heat rather than generate heat. However, heat pump efficiency

will gradually decline as the difference between source and sink temperature increases. During

extreme cold, heat pump technologies may rely on back-up electric resistance elements. Reasonable

assumptions for seasonal average heat pump coefficient of performance can range from 2.25 to
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Technology Energy Ser-
vice

Unit size
[various]

Life time
τa [years]

Annual
energy
con-
sumption
[MWh /
year]

Energy
efficiency
[MWh
service
/ MWh
fuel]

Template Residential Appliances
Gas furnace Residential

Space Heat-
ing

4 ton 18 - 20 7.7 - 19 0.62 -
0.90

Gas water
heater

Residential
Water Heat-
ing

50 gal. 13 - 18 4.4 - 6.5 0.60 -
0.96

Gas cooking Residential
Cooking

4 9,500
BTU-
burner

19 0.73 -
0.94

0.25

Air-source
electric heat
pump

Residential
Space Heat-
ing

4 ton 19 - 25 0.95 - 9.8 1.75 - 5

Electric heat
pump water
heater

Residential
Water Heat-
ing

50 gal. 15 1.5 - 3.5 1.8 - 3

Electric
induction
cooking

Residential
Cooking

4 5kW-
burner

19 0.37 -
0.47

0.50

Template Commercial Appliances
Gas furnace Commercial

Space Heat-
ing

10 ton 16 25 - 60 0.62 -
0.90

Gas water
heater

Commercial
Water Heat-
ing

199
kBTU/
hour

13 9.8 - 20 0.60 -
0.96

Gas cooking Commercial
Cooking

24 9,500
BTU-
burner

12 14 - 35 0.25

Air-source
electric heat
pump

Commercial
Space Heat-
ing

10 ton 16 3.1 - 31 1.75 - 5

Electric heat
pump water
heater

Commercial
Water Heat-
ing

74
kBTU/
hour

17 2.0 - 11 1.8 - 3

Electric
induction
cooking

Commercial
Cooking

24 5 kW-
burner

19 7 - 18 0.50

Table 2.1: Operating characteristics for modeled template appliances.
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3.5 [97], however these are highly sensitive to ambient climate. RMI (formerly Rocky Mountain

Institute) completed building energy simulations for representative locations in all 48 contiguous

states in order to evaluate the emissions impacts of electrifying space heating. The “heating season-

weighted” coefficients of performance range from 2.06 (in Fargo, ND) to 4.06 (in Los Angeles, CA)

depending on the regional climate [98]. Hybrid gas-heat pump furnaces are commercially available

and often selected in cold-climates over full-electrification for their resilience to extreme cold weather.

Gas-fired water heater efficiencies can range similarly from 60% to 96% depending on whether

they are storage or tank-less (instantaneous) gas water heaters and whether they extract the latent

heat of condensation from gas combustion products. Electric resistance water heaters will have

a thermal conversion efficiency of close to 100% with losses only associated with storage tanks

[97]. Tankless water heaters can reduce thermal losses, and improve efficiency. However, tankless

electric water heaters require much larger power draws on the order of 13-36 kW depending on

the rate of hot water demand (2.54 - 7.03 gallons per minute, respectively). Heat pump water

heaters can have coefficients of performance exceeding 3 [97] however field studies find more realistic

COPs ranging from 1.8 - 2.3, depending on the degree of reliance on electric resistance elements

[99]. Also, heat pump water heaters draw heat from their ambient environment and can lower

the surrounding temperature considerably (especially in confined spaces), potentially increasing the

demand for space heating. These interactive effects have been modeled in building energy simulation

tools [100], but are omitted for simplicity in the proposed modeling framework. The interactive

effects between water heating and space heating are considered to be negligible for the system-scale

planning study proposed here. Incorporating this feature would require building-level tracking of

appliance populations, in order to apply different energy demand profiles for air source heat pumps

that exist in buildings with heat pump water heaters. For a more thorough review of the efficiency

characteristics and considerations for modeling heat pump water heaters see [101]. Hybrid gas-fired

heat pump water heaters have been developed [102], analyzed [103] and demonstrated in recent field

studies [104], however these technologies are not widely available and are omitted from the current

study.

For cooking energy demands, electric induction is often cited as the most efficient cooking tech-

nology. Induction cook tops have fewer losses as they heat the cooking implement directly rather

than via conductive heat transfer. As such, induction cooking can transfer up to 90% of the electric-

ity consumed to the cooked items, while traditional electric and gas cooking systems are referenced

at 74% and 40% efficient, respectively [105, 106]. Experimental results for gas stove efficiencies con-

firm this value, ranging between 32 - 47% [107]. Electric ovens have cooking efficiencies of 12-14%,

compared to a gas oven efficiency of 6-7% [106, 108]. Cooking energy efficiency values will vary

depending on ambient conditions, sizing of cookware, and user cooking behavior. For simplicity, we

assume that half of the cooking energy is consumed in stoves and half in ovens and that both will

be powered by the same fuel. We use default values of 51% for electric cooking and 25% for gas
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cooking appliances.

Next, annual energy demands are down-scaled to hourly values. Several sources are used to

generate plausible values for appliance energy demand normalized to annual consumption. This

work employs template building energy simulations conducted with EnergyPlus or Building Energy

Optimizer (BEOpt) [109]. Simulations are available for a set of template residential and commercial

buildings [109]. A recent study used linear regression analysis and empirical heat pump efficiency

correlations to estimate hourly gas demands by census district [92]. Gas-fired appliances are as-

sumed to operate with similar temporal efficiency characteristics as resistance electric appliances.

While some gas appliances will operate less efficiently or with greater losses during different weather

conditions, in general, these effects are assumed to be small relative to the annual energy efficiency

differences [97]. However, the impact of ambient conditions on heat pump efficiency is expected to be

larger and non-negligble as use of resistance back-up may trigger large peaks in electricity demand

during cold weather. As such, we use the modeling efforts of [92] to generate plausible profiles for

electric heat pump energy consumption for space heating by state.

NREL’s EFS [93] also produces hourly electricity demand simulations at the state-level using the

dsGRID modeling tool. Electricity demand data is provided for several end-use services such as water

heating, space heating and cooling, and clothes drying/dish washing under a range of technology

adoption scenarios across a transition away from direct-gas use. However, the available electricity

demand profiles aggregate several different technologies providing the same service. And key gaseous

energy demands, such as cooking, are combined with a wide range of energy services in the “Other”

category. Note also that the EFS data combines space heating and cooling electricity demands. To

model the transition of space heating demands currently served by gas furnaces, these profiles must

be normalized to heating demand only. Here, we use a proxy to indicate whether an hourly energy

demand is providing heating or cooling services. Future work may explore opportunities to leverage

these efforts to generate representative consumption profiles for appliances of various technology

types and in various geographic climate zones.

Default appliance sizing, cost, and lifetime assumptions are based on the academic literature [110,

96], Building Energy Optimization (BEopt) data [111], commercially available technologies [112, 113,

114, 115, 116], and NREL EFS data [97, 117]. Installed cost assumptions for each template appliance

candidate are presented in Appendix Section A.2.

Some electric appliances may require substantial building envelope retrofits, electrical panel

upgrades, or other rewiring of building electrical infrastructure. These costs can exceed the upfront

capital cost of the appliance alone and present substantial barriers to adoption. Such building

infrastructure upgrade costs are highly uncertain and case-specific, and often depend on the age

of the building. Parametric scenarios can be used to test sensitivity of results to the upgrade cost

assumptions for each appliance type. Upgrading a home electrical panel to handle 200 amps can

cost up to $4,000 [118]. Alternatively, new 50 amp sub-panels could be installed for $500, but may
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require rewiring which can cost over$1,400 in labor and materials. Heat pump water heaters must be

installed in areas that remain between 40 °F to 90 °F and are surrounded by at least 1,000 cubic feet

of air [119]. As such, renovations to existing closet spaces may be required to accommodate these

appliances. Finally, building envelope retrofits may be necessary to fix a leaky home or building

before switching to an electric heat pump for space heating. These efficiency retrofits can range in

cost from $11 to $34 per square foot [120].

To further complicate things, in some cases it can be challenging to allocate infrastructure up-

grade costs to a single appliance as it may be the combination of several modeled (i.e., heat pump

water heaters) or non-modeled (i.e., electric vehicle adoption) investments that trigger the need for

rewiring or panel upgrades. It is similarly challenging to account for the increased property value

and the myriad of health and quality of life benefits that may accompany such building energy

efficiency improvements. Given these uncertainties, we provide the modeler the maximal amount

of flexibility to parametrically specify the cost of building infrastructure upgrades that accompany

appliance investment decisions.

For the purposes of model demonstration, we abstract appliances to indicative templates with

annual consumption informed by the RECs and CBECs surveys [95, 94] and hourly consumption pro-

files based on a set of template building energy consumption simulations for a typical meteorological

year [109]. However, the proposed modeling framework is extensible to inclusion of highly-detailed

appliance population breakdowns if these data are available. Additional sources for more detailed

building and/or appliance stock information could include the American Community Survey [121],

the County Business Patterns data [122], and the Federal Energy Management Agency’s Hazus Gen-

eral Building Stock [123] (as used in [92] and described in [124]). In addition, future work should

aim to incorporate correlations that exist between modeled appliance demands, the assumed baseline

energy demands, and the availability of renewable energy resources. Recent research efforts in this

regard have developed approaches using the NREL’s ResStock tool to conduct detailed building-

level simulation of appliance populations and their potential grid impacts [125]. Future efforts in

gas-electric system planning should move towards use of such statistically-representative tools to

generate a set of appliance consumption profiles for residential and commercial appliances (using

ResStock and ComStock, respectively).

Finally, there is a large set of equipment and appliances that fall outside of the scope of the

natural gas and electric power sectors that may also be transitioned to the electric system. In some

regions, fuel oil and liquified petroleum gas providers currently satisfy the heat demands of many

customers. Adoption of electric vehicles across the transportation sector is also a crucial strategy for

achieving cost-effective, decarbonized economies. Suppliers of liquid fuels are not typically subject

to the same regulatory oversight as natural gas and electric utilities. As such, these investment

decisions, operational characteristics, and emissions consequences are not included in the presented

optimization program. However, the transition of these final energy demands to the electricity system
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may alter the least-cost strategy found for the natural gas and electric sectors, when modeled in

isolation. In future work, the novel quantitative approach presented here for endogenous evaluation

of equipment failure and replacement alongside centrally-planned system design and operations

decisions may accommodate the inclusion of other sectors such as liquid fuels providers.

2.4.2 Energy supply

Candidate and existing energy supply units are modeled for the electricity system and the gas system.

Here, we describe the operating characteristics for each of these sets of modeled energy supplies and

the associated cost assumptions.

Electrical energy supply

Energy supply units in the electricity system can include conventional thermal generators, such as

nuclear-fueled plants, coal-fired plants, gas-fired combustion turbines or combined-cycle gas-fired

generators. Every generation unit will be specified by a nodal location on the electricity system, a

nodal location on the gas network, and the set of operating characteristics included in Table 2.2.

Here, we present technology-average default values for each parameter and modeled generator type,

however the modeling framework is flexible to include additional technology-classes or unit-level

specification of generators and their attributes.

Representative unit sizes for generation plants are referenced from [15] with solar and wind plants

modeled as continuous. When integer unit-commitment variables (see Eq. (2.22)) are relaxed, these

unit sizes do not play a role in meaningfully constraining dispatch operations. Operating lifetime

assumptions are referenced from [15], however empirical values can be estimated by using EIA Form

860 data in future work [126]. Plausible unit ramp rates, stable power output bounds, and minimum

up/down-times are referenced from [15]. Heat rate assumptions for new generators are referenced

from NREL’s ATB [127]. Default average heat rates for legacy generating fleets are referenced

from the EIA Electric Power Annual with data for 2019 [128]. Unit-specific average heat rates

can be estimated from empirical data available in EIA Form 923 [129]. While unit heat rate will

vary in time and across seasons as a function of operational patterns and ambient temperatures,

for simplicity we use constant average heat rates applied to all generation output to assess fuel

consumption and emissions factors. Fuel emissions factors are referenced from the Environmental

Protection Agency’s Greenhouse Gas Inventory assumptions [130] with an assumed carbon capture

efficiency of 90% [15]. If more granular heat rate and emissions factor data are desired, the EPA’s

Air Markets Program Database (AMPD) provides hourly data at the unit-level for gross generation

output, fuel consumption, and CO2 emissions [131].

Additional generator characteristics specified for a given case study include the number of existing

legacy generators of that class and their associated installation year, to evaluate natural retirement.

Each generator can have an assumed maximum total expansion across the modeled investment
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Electricity generators
Resource Unit

size uω
[MW]

Life
time
τω
[years]

Max./Min.
power
output
[p.u.]

Max.
hourly
ramp rate
[p.u./hour]

Min.
up/down
time
[hours]

Heat
rate for
new /
legacy
units ηω
[MMBtu
/ MWh]

Fuel emis-
sions factor
βω [tCO2 /
MMBtu]

Natural gas
combustion
turbine (CT)

50 55 0.1/1 1 1/1 9.51/
11.10

53.1

Natural
gas-fired
combined
cycle (CC)

100 55 0.3/1 0.7 2/1 6.40/
7.63

53.1

Coal 200 75 0.5/1 0.3 24/12 10.3/
10.00

97.7

Nuclear 500 60 0.5/1 0.25 36/36 10.46/
10.44

0

Solar PV 1 30 0/1 1 1/1 0/0 0
Wind 1 30 0/1 1 1/1 0/0 0
NGCC+CCS 500 55 0.4/1 0.6 4/3 7.53/

n.a.
5.31

Table 2.2: Assumed design and operating characteristics for electricity generators.
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time horizon [no. units] and a maximum rate of expansion [no. units/year]. These will vary

by geography and are often excluded in high-level planning studies to first identify the least-cost

resource mix absent such limits. However, these optional attributes can be used to characterize

land-use constraints or local opposition to generation expansion.

All generators also have specified parametric assumptions for minimum and maximum temporal

availability γ, γ [on a per unit basis]. The minimum generation γ will equal 0 in all time steps for

all generating units that are not associated with a so-called “must-run” commitment. Such units

could include combined heat and power plants that must burn fuel to satisfy on-site heat demands.

The maximum temporal generation γ will be equal to 1 in all time steps for all generating units that

are not associated with weather-dependent or seasonal production limitations. Most commonly, this

will be applied to solar and wind generators that rely on the instantaneous availability of energy

from the ambient weather conditions. However, some coal-fired generating stations have associated

seasonal generation constraints due to air quality regulations [23]. For fuel-secure, fully-dispatchable

units, the maximum per unit availability will be equal to 1 and the minimum per unit availability

will be equal to 0 in all time steps.

Temporal availability of electricity production from variable renewable energy generators is spec-

ified using either historical generation data for the region of interest or simulated production data

for specific locations. Historical data is available for total hourly generation by fuel-type from EIA’s

Form 930 Operating System Dashboard [90] (from July 2015 - present) and, in some cases, grid

operator websites [132, 133]. Some entities also publish simulated production data across many

historical weather-years for use in probabilistic generation resource adequacy studies [134, 135].

To produce hourly capacity availability factors for each variable renewable resource, we divide

total generation in each hour by the amount of generation capacity installed at the time. Installed

capacity values for each historical month are estimated using EIA Form 860 data and can be aggre-

gated to the state-, balancing authority-, or regional-level as needed [126]. This approach abstracts

away some spatial resource heterogeneity to produce a class-average, regional renewable energy

profile that is often sufficient for planning studies.

Where low-quality data exist for installed capacity or hourly generation, increasing the regional

scope can produce a plausible result that is less sensitive to missing or erroneous data points. If no

high-quality empirical data exist for a desired region from any of the above sources, NREL’s System

Advisory Model (SAM) [136] allows for granular simulation of hourly and sub-hourly production

profiles for specific locations, as specified by a latitude and longitude.

All capital, operating, and fuel cost assumptions for electricity generators are referenced from the

NREL’s ATB [127]. NREL’s ATB synthesizes the best available data in the literature from govern-

ment, professional, and academic sources to conduct bottom-up cost modeling for each generation

technology.
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Net-zero emissions gas production
Technology Unit

size uz
[MW]

Life
time τz
[years]

Hydrogen en-
ergy fraction
(LHV basis)
[%]

Conversion
efficiency
ηz [MWh
gas / MWh
elec.]

Biomethane 1 40 0 n.a.
Electrolytic
hydrogen

5 20 100 0.65

Electro-
methane

5 20 0 0.45

Table 2.3: Operating characteristics for power-to-gas units.

Gaseous energy supply

Energy supplies for the natural gas system include fossil natural gas supplies at the system boundary

or locally available at specific gas nodes and endogenously modeled production of net-zero emissions

fuels such as biomethane, hydrogen, or electro-methane.

Supply of natural gas are assumed to be available from outside of the region at the designated

“slack” node. Local supplies of fossil natural gas can also be included by modifying the maximum

supply rate available at a given node Ŝ. Commodity costs of natural gas are estimated based on

NREL’s ATB [127]. For this work, we use annual average values in order that the same commodity

cost of natural gas can be assigned to all operations for a given investment year. The cost of gas will

fluctuate seasonally, however the impact of these variations on the least-cost system design decisions

across a multi-decade planning horizon remains an area of future work. As legacy supply chains

for energy are reshaped by the transition to net-zero emissions energy systems, observed seasonal

features in commodity pricing may not be wholly indicative of future patterns.

Net-zero emissions fuel production units will have an associated gas node, electrical node, and

operating characteristics such as conversion efficiency, hydrogen fraction, and operating lifetimes.

Default values are presented in Table 2.3. Note that electrolytic fuels are not technically net-zero

emissions until the electricity supply comes from net-zero emissions sources. However, for simplicity

of exposition, we will refer to this family of fuels as net-zero emissions gases.

Biomethane production facilities convert biogenic organic material into a raw biogas through

anaerobic digestion or a raw syngas through gasification. These gases are then processed to remove

bulk inert components (most commonly carbon dioxide and nitrogen) and trace contaminants (hy-

drogen sulfide, siloxanes, etc.) required purity specifications for consumption. The most common

sources of biogas include landfills and wastewater treatment facilities, both of which utilize anaerobic

digestion. In the United States, these facilities are, in general, already required to capture and flare

waste methane. As such, many facilities use biogas productively for on-site generation of electricity

and heat. Biogas can also be purified or converted into biomethane by removing the carbon dioxide
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components. When methane purity greater than 95% is achieved, biomethane is considered a drop-in

interchangeable fuel with fossil natural gas and can be introduced to the common-carrier pipeline.

Several technoeconomic studies have estimated the available supplies and levelized cost of biomethane

production [137]. This body of work indicates that sources of biomethane with capture equipment

already in place (i.e., existing landfills and anaerobic digesters at waste-water treatment facilities)

will offer the lowest-cost biomethane resource, with costs ranging from $5 to $20/MMBtu ($17 to

$68/MWh thermal). Smaller-scale, distributed animal waste resources lie at the most expensive end

of the supply curve with costs exceeding $60/MMBtu ($200/MWh thermal) [137].

Sustainable sources of biomethane are typically supply-constrained and can be subjected to

annual limitations in Eq. (2.63). These limitations will be region-specific and subject to large

uncertainties as the current model formulation does not endogenously consider competing demands

for sustainable biofuels in the transportation sector. Biogas from anaerobic digestion will likely be

most cost-effectively converted to a gaseous fuel as it is already 50% methane. However, syngas

from biomass gasification may be converted to longer-chain hydrocarbons to produce liquid fuels

at similar unit energy costs by tuning the ratio of hydrogen to carbon entering the fuel synthesis

reactor. Given the relatively high value of liquid fuels per MJ and the lack of good options for

replacing some transport demands (most notably jet fuel), it is possible that transport applications

will be able to outbid gas consumers for biomass-based fuels.

Here, we use simple volumetric limits on the supply of biomethane, mimicking a de facto price

floor and supply cap imposed by higher-value demands for bio-energy in liquid fuels. However,

competition between the liquid and gaseous fuels markets for sustainable bioenergy resources is a

factor that should be accounted for more explicitly in future energy systems planning optimization

work.

In this work, we assume natural sources of waste methane will be captured and available in a

continuous fashion. To model this, we assume a levelized cost of biomethane equal to $15/MMBtu

($51.20/MWh) and convert this to an equivalent fixed operating cost for a facility with a 100%

capacity utilization factor. In other words, a 1 MW biomethane production facility can produce as

much as 8760 MWh per year and will have an associated fixed operating cost of $448/kW-year with

no modeled variable operating and maintenance costs. In this manner, the model will preferentially

dispatch these resources with high utilization factors, reflective of the, generally, continuous nature

of biomethane production.

For hydrogen, we primarily consider proton exchange membrane electrolyzers as expert elicitation

studies suggest these are likely the dominant technology by 2030, achieving lower capital costs

and facilitating cost-effective intermittent operation [138]. For a most comprehensive overview of

electrolyzer technologies, their capital and operating costs, and efficiency characteristics we defer

to [139], [140] and [141]. We assume that electrolytic hydrogen production facilities will blend

100% hydrogen into the natural gas system, and produced oxygen is assumed to be vented to the
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atmosphere.

Electrolyzer conversion efficiencies are expected to improve over time. Near-term projects have

been referenced between 40 and 69% [142] but are likely to achieve efficiencies closer to 60% [139].

By mid-century it is anticipated that efficiencies will reach or exceed 70% [139]. However, as we

model a single set of operating parameters for all units in each technology class, we use an estimate of

65% (consistent with the 2035 scenario in [143] and the “Next-decade” case in [141]). Future model

extensions may accommodate changing technology characteristics with more granular equipment

vintage tracking or by including multiple classes of electrolyzer technology, which become available

in a future investment year (see Section 2.7.1).

The capital cost trajectory for electrolyzers is highly uncertain and a wide range of estimates

exist in the literature. Here, we assume a moderate case where these capital costs scale linearly from

$1,025/kWe in 2018 to $570/kWe in 2030 and to $485/kWe in 2050 based on the analysis in [141].

Fixed operating cost estimates generally range from 2-5% of capital investment with the cost of stack

replacements across a 20-year plant life estimated at 50-60% of investment cost [142]. Other studies

also suggest stack replacement intervals of 7-10 years with costs equal to 15% of installed capital

cost [143]. Here, we adopt the same approach taken by [141] and consistent with [143] and assume

fixed annual operating costs (including stack replacements) equal to 7.5% of capital investment.

The largest variable cost of hydrogen production will be the endogenously-evaluated cost of input

electricity. As such only small additional variable costs are modeled to account for the cost of water

(0.08 $/kg H2) and estimated costs of compression [140].

For electro-methane production, we assume electrolytic hydrogen is combined with climate-

neutral carbon dioxide to produce a net-zero emissions methane-rich fuel gas that can act as a

drop-in substitute for fossil natural gas. The conversion efficiencies for electrolyzers are the same

as outlined above. Reverse water-gas shift reactors are used to convert a stream of hydrogen and

carbon dioxide into a syngas with larger mole fractions of carbon monoxide and hydrogen. This

syngas can be passed into a Fischer-Tropsch fuel synthesis reactor to generate hydrocarbons such

as methane, ethane, and butane. Taken together, this yields an all-in electricity-to-fuel efficiency of

45%. This is in general agreement with other studies that find efficiencies of 33-41% [144].

The capital cost of a fuel synthesis reactor to convert carbon dioxide and electrolytic hydrogen

to methane is assumed to decline linearly from $1,770/kWfuel in 2018 to $1,010/kWfuel in 2030

and further to $760/kWfuel in 2050 based on the analysis of [142] and [141]. Assuming the same

electrolytic efficiency of 65% and applying a fuel synthesis efficiency of 70%, these costs are converted

to [$/kWe].

Recent studies have found that optimally-designed electrofuels plants will include storage of heat,

hydrogen, and carbon dioxide to achieve high utilization factors for capital-intensive carbon capture

and catalytic upgrading equipment [145, 141]. These effects are non-negligible, but challenging to

incorporate endogenous to the system-wide planning optimization. Instead, we create a simplified
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“black box” representation that considers these cost components of electro-methane as variable costs

assuming a fixed capacity factor utilization of fuel synthesis equipment and a fixed cost of climate-

neutral carbon dioxide. These capital costs are levelized across an assumed 20-year plant life using

a capital recovery factor of 0.1, reflective of a 7% internal rate of return. The fixed operating costs

for fuel synthesis reactors are assumed to be 10% of invested capital, inclusive of any necessary

investments in hydrogen or carbon dioxide storage for system design optimization. These fixed costs

are then levelized across an assumed 75% utilization factor.

Costs of climate-neutral carbon dioxide for fuel synthesis are assumed to decline linearly from

present day values of $600/tCO2 in 2018 to $130/tCO2 in 2040 [141]. The fuel synthesis reactor

is assumed to have a carbon dioxide conversion efficiency of 95% [142, 141]. Other studies suggest

lower carbon efficiencies for Fischer-Tropsch reactors, ranging from 65%-89% [144], however here,

we assume unconverted CO2 can be recirculated to achieve higher conversion fractions. These costs

are accounted for in the variable cost of electro-methane presented in Appendix A.2, and the only

explicitly-modeled electro-methane capital and fixed operating costs is that of the electrolyzer. In

future work, the set of decision variables may be extended to co-optimize capture of climate-neutral

carbon dioxide, generation of net-zero emissions hydrogen, production of electro-fuels, and any

intermediate storage of energy or chemicals (as implemented in [141]).

In this work, we only explicitly track hydrogen and assume the remainder of gas in the pipeline

network can be modeled as methane. We limit hydrogen transmitted through a pipeline or delivered

for consumption at a node to less than 20 mol.% of the mixture [146]. However, ongoing research

continues to examine the materials limitations of hydrogen delivery and consumption.

Future work may extend the component tracking formulation to account for additional con-

stituents, such as carbon dioxide or ethane, and their impacts on heating value, specific gravity,

and gas interchangeability indices. Optimized blending of liquified petroleum gases or inert compo-

nents, like nitrogen, could be used to control gas quality and ensure combustion interchangeability

for all end-use customers. Alternatively, more rigorous formulations for the pooling problem could

be included (see Appendix Section A.4 for more). Future modeling extensions may also consider

additional sources of low-emissions hydrogen from natural gas steam methane reforming or methane

pyrolysis equipped with carbon capture technologies. These are not modeled in the current work,

but are easily accommodated in future study as net-zero emissions gas units.

2.4.3 Energy storage

In this work, we model energy storage units for gas and electrical energy, each specified by an asso-

ciated gas node, electricity node, and set of operating characteristics presented for a set of template

technology types in Table 2.4. Note that there is an ever-expanding set of storage technologies under

development to serve the range of market niches that may exist in a decarbonized energy system.

In this work, we parameterize each storage technology using a generalized set of specifications for
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Storage
Technology Unit

size us
[MW]

Duration
[hrs]

Life
time τs
[years]

Charge ef-
ficiency η+

s

[MWh to stor-
age / MWh
elec.]

Discharge
efficiency η−s
[MWh elec.
/ MWh from
storage]

Loss rate ηls

Lithium ion
battery

1 4 15 0.92 0.92 1% per
month

Long-
duration
storage

50 720 55 0.63 0.53 0.01% per
year

Subsurface
gas storage

1300 1200 75 0.96 0.995 0.01% per
year

Table 2.4: Operating characteristics for energy storage units

technology charge and discharge efficiencies and hourly loss rates.

First, we model a short-duration electricity storage candidate based on 4-hour duration lithium-

ion battery technology. We use technology cost assumptions from the NREL’s 2020 ATB [127] and

their referenced sources [147]. Lithium-ion charge/discharge efficiencies and estimated lifetimes are

referenced from [15] and [127].

Second, we model a long-duration electricity storage candidate based on electrolysis paired with

underground hydrogen storage [16] and a hydrogen-fueled combined cycle gas turbine. Electrolyzer

cost and efficiency assumptions are explained in Section 2.4.2. Parasitic energy consumption for

compression for underground storage can exceed 8% of hydrogen energy (on an LHV basis) and can

be as high as 16% for tank storage [148]. Energy required for compression [149] and any potential

compression losses [150] are applied to the electrolyzer conversion efficiency to estimate the storage

charging efficiency of 63%. Capital costs of the underground hydrogen storage are assumed to scale

with total volumetric energy capacity and remain constant across our planning horizon at $0.35/kWh

[151] (escalated to 2018$). A hydrogen combined-cycle gas turbine is modeled after a natural gas

combined-cycle turbine and assumed to perform at similar LHV efficiency (53%) and cost per [127].

Third, underground natural gas storage fields are also modeled and are sized based on the average

facility in the United States [152]. These facilities are modeled using the same set of operating

parameters as electrical energy storage, however there may be important transient features that

are not addressed by this model simplification as shown by [87]. The only associated efficiency

losses are in compression of natural gas [149] and minor modeled losses of 0.01% per year from

the subsurface [16]. In order to approximate the limits on flexible charging and discharging of gas

storage, we require that gas storage facilities have the same charge/discharge rate in all hours across

each representative day. This approach is consistent with the average gas pipeline flows evaluated in

steady-state across each representative day in Section 2.3.5 and the gaseous energy balance enforced

across each representative day in Section 2.3.5.
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All storage technologies are modeled as flexible units without any parametric limitations on the

rate of change of charge or discharge (i.e., hourly ramp rates, minimum up- or down-times). These

attributes may be important for some less flexible gaseous and thermal energy storage technologies

and can be accommodated in future work by adapting the constraint set in Eq. (2.23) to apply to

storage charge/discharge variables ψ+, ψ−.

Some energy storage technologies may be flexibly designed to optimize the storage duration,

with different power capacity for charging and discharging. For example, the modeled long-duration

hydrogen storage may separately size the electrolyzer, the storage tank, and the combustion turbine

to fit the system’s needs. This functionality is included in similar models in the literature and has

been used to identify the storage attributes which offer the greatest system value [15]. In future

versions of this work, decision variables may be included for all three storage technology attributes:

charge power capacity [MW], energy storage capacity [MWh], and discharge power capacity [MW].

In addition, electro-chemical storage capacity is expected to degrade over time and as a function

of cycling behavior. This feature is not included in the current model formulation, but could be

accommodated in future work.

2.4.4 Transmission and distribution

Network topology

The transfer of gas and electricity between nodes on each system is governed by the network configu-

ration as described in Section 2.3.1. Here, we describe the parameters for each edge that are required

to fully specify a network configuration. We also describe the approach to estimate costs associated

with transmission and distribution infrastructure operation, maintenance, and re-investment.

Electricity transmission lines are specified by an origin node, a terminus node, and a maximum

power flow. If the steady-state DC power-flow models in Eq. (2.18) are employed, the network

must also be specified by a base MVA, line impedance on a per unit basis, and a designated slack

(or reference) bus with its voltage angle constrained to equal 0. Template examples of such power

networks are available from the IEEE.

Gas transmission pipelines are specified by an origin node, a terminus node, a pipeline diameter,

length, and friction factor. Each transmission pipeline will also have a maximum compression ratio

α. Compression ratios for gas transmission compressors are always greater than 1 and typically below

2, however multi-stage compression units can be used to produce larger maximum compression ratios

[153]. If a compressor does not exist on the pipeline then both compression ratio bounds are equal

to 1.

Generating transmission network topology data sets can be challenging as this information is

generally withheld due to security concerns. Previous work by this author has used geographic

information systems (GIS) data sources to generate plausible network connections between potential

sources of gas and regional demands at the zip-code level [9]. Pipeline network data sets have
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also been created for a 24-pipeline template system [38], the Belgian gas network [47], and the

Transcontinental pipeline [154]. However, when using GIS data, it can be challenging to identify

where distribution-level off-takes exist and where transmission-level features may be intersecting, but

do not exchange energy. Missing network connections due to slight misalignment in two transmission

features can result in infeasible networks with stranded sections of energy demands. In addition,

important topology information may be abstracted away when features (such as parallel, but not

connected pipelines) are lumped together as a single network edge. For the most recent overview of

approaches in synthetic pipeline and electricity network creation see [154].

Infrastructure costs

In this work, fixed costs of energy transmission and distribution (T&D) infrastructure investment

and maintenance are abstracted behind exogenous assumptions based on system attributes indicative

of the capacity of generic T&D infrastructure and correlated with the revenue requirement of an

energy utility provider.

For the electricity system, the capacity of transmission and distribution infrastructure will

roughly scale with the instantaneous peak in energy demand on the system. These correlations

have been identified in the academic literature [155] and are widely used to estimate the value

of distributed energy resources or the avoided costs due to energy efficiency measures [156, 157,

158]. Other regulatory proceedings have generated utility-specific values for the marginal cost of

transmission and distribution capacity [159].

In California, the marginal costs of transmission capacity are estimated using utility-specific

data either from the General Rate Case or Commission data requests. These calculations produce

utility-specific results that range from $11.75 to $28.52 per kW-year [159]. The marginal costs of

distribution infrastructure are partitioned into the near-term and the long-run marginal costs using

different data sources. Project deferral data allows such estimates for the near-term marginal costs.

These values can range as low as $3.66/kW- (for San Diego Gas & Electric territory) to $29.13/kW-y

(for Southern California Edison) [159]. For long-run marginal costs of distribution capacity, General

Rate Case data are used to estimate the costs of meeting incremental peak-coincident electricity

demands. This produces a wider range of estimates spanning $19.48 to $206.57 per kW-y in the

case of California utilities [159].

For the generalized purpose of this model, we abstract these factors behind a single default cost

value – the incremental cost of non-modeled electricity transmission and distribution infrastructure

to serve peak demands is assumed to be $21/kWpeak-year and $52/kWpeak-year, respectively [155].

For the gas system, fixed costs of gas distribution system maintenance are estimated based on

EIA Form 176 filings by natural gas distribution companies [160]. We estimate the fixed costs of

system maintenance and re-investment as the difference between total revenues collected and the

costs of fuel delivered. We use city-gate natural gas prices from EIA for each state and separately



www.manaraa.com

2.4. DATA & ASSUMPTIONS 63

estimate the fixed costs of distribution allocated to the residential and commercial sectors. We

assume the industrial sector bears a negligible share of distribution costs in their rates.

Proportionate monthly deliveries are estimated for each state based on EIA RECS [94] and

CBECS [95] data, paired with temporal profiles for energy consumption by end use from EFS data

[93]. These hourly profiles offer a rough estimate of the relative monthly gas consumption and are

meant to capture the coarse relationships between the cost of natural gas and the relative demand

for distribution-level end-uses. This likely represents an over-estimate of the degree to which gas

distribution companies are exposed to the monthly city-gate price as long-term contracts and gas

storage facilities are used to hedge price exposure.

Figure 2.4: Distribution of estimated gas distribution utility fixed costs for the year 2019.

Figure 2.4 presents the distribution of estimated fixed system costs for residential and commercial

sectors across gas companies and averaged across states. Note that revenues collected from particular

sectors may not perfectly align with cost causation principles, and some degree of customer class

subsidization is expected. Further, long-term contracts for natural gas and use of seasonal gas storage

fields allow distribution companies to reduce exposure to the seasonal fluctuation in city-gate prices.

However, to a first-order, these offer plausible estimates for the cost-of-service of gas distribution.

The proposed model does not currently implement expansion variables for gas or electric trans-

mission units. However, future work may do so as outlined in Appendix Section A.3. Introducing

expansion and retirement of transmission assets would allow for more explicit fixed cost considera-

tions, using the characteristics of the network assets in the gas and electricity systems. The most

widely cited cost estimates for development of new electric transmission can be found in [161]. Cost

estimates for gas pipeline projects is published by the EIA [162] and can be used to inform estimates

for new transmission pipeline expansion as a function of pipeline length and diameter. Transmission

expansion scenarios should be modeled with extreme caution, however, as these projects are more
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Electricity Gas
Source Emissions

intensity [ kg
CO2/MWh
elec.]

Source Emissions
intensity [ kg
CO2/MWh
fuel]

Solar/Wind 0 Biomethane 0
Coal-fired generation 1,006 Electrolytic H2 (Solar) 0
Natural Gas-fired CT 504 Electrolytic H2 (Natural Gas-

fired CC)
523

Natural Gas-fired CC 340 Electro-methane (Natural
Gas-fired CC+CCS)

89

Natural Gas-fired CC+CCS 40 Fossil Natural Gas 181

Table 2.5: Greenhouse gas emissions intensity for a variety of indicative electricity and gaseous
energy sources for conceptual comparison with system-wide targets.

often constrained by regulatory, social, and political barriers than the relative economics. As such,

even as new transmission is routinely found to play a keystone role in cost-effective decarbonized

energy systems [163, 164], scenarios for integrated gas-electric energy system planning should be

cognizant of the limitations that may exist on regional transfer of energy with existing infrastruc-

ture.

2.4.5 Energy policy constraints

Emissions intensity constraints are included for the electricity sector and the gas sector. Sub-national

climate policies target net-zero economy-wide emissions by 2045 [165] or 2050 [166, 167] with specific

targets for the emissions associated with retail electricity sales [168]. However, many climate policies

lack meaningful enforcement of interim targets and no current law requires such emissions reductions

in the natural gas sector.

To fully specify Eq. (2.60), every modeled investment year must have a corresponding emissions

intensity limit for both the electricity and the gas sector entities. Each case study will have pa-

rameters for emissions intensity trajectories either informed by current policy, voluntary targets, or

indicative decarbonization scenarios. This modeling framework offers a maximal degree of flexibility

to test the impact of pace and timing of such sector-specific emissions constraints. For context,

we present a sampling of emissions intensity estimates in Table 2.5 for typical sources of delivered

electricity and gas using the characteristics outlined in Table 2.2 and 2.3.

Model functionality is also included to test the impact of permitting negative emissions tech-

nologies for atmospheric carbon removal. Some existing climate policies permit some use of negative

emissions offsets bound by 7% of a regulated entities emissions liabilities [169]. However, large un-

certainties exist about the bio-physical limitations of cost-effective carbon removal [170, 171] and the

permanence of existing offset projects [172, 173]. For all results presented here, negative emissions
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offsets or atmospheric carbon removal are not permitted. As such, these variables are constrained

to maximum shares of emissions liabilities equal to 0%.

Note that we do not model or account for the costs or climate impacts of any non-CO2 co-

pollutants or the associated public health consequences. This remains an important area for future

study. Specifically, as heat pump technologies become a keystone feature of decarbonized energy

systems, the life-cycle impacts of refrigerants will be important to include. We also do not include

natural gas leakage from production, transmission, and distribution systems [174] or from gas-fired

appliances [175]. Methane leakage may account for non-negligible life-cycle climate impacts for

intentionally produced methane [176]. However, this feature can be accommodated by the presented

modeling framework in future studies.

Further, as illustrated in Table 2.5, emissions impacts of electro-fuels may be significant if not

generated using clean electricity. The current model implementation applies a net-zero emissions

intensity to any direct-use of electro-fuels. This represents a policy scenario where contractual

arrangements are made by electro-fuels production facilities to operate with 100% emission-free

electricity. In the proposed modeling framework, liabilities for any upstream emissions associated

with the production of net-zero emissions fuel are accounted for in total emissions of electricity

generation. This represents a model simplification to avoid double-counting of GHG emissions

liabilities, and to reflect one plausible regulatory future.

Finally, we treat biomethane as a climate-neutral fuel with an assessed emissions intensity of 0

[kg CO2/MWh]. Current biomethane projects are typically credited for the high global warming

potential methane emissions avoided through capture and productive use of methane [9]. This can

result in net negative life-cycle carbon intensity values. The implicit assumption of our study is that

the anthropogenic release of methane from waste management and agricultural facilities is or will

soon be regulated to be zero. As such, the baseline from which any emissions benefit is evaluated for

incremental productive use of biomethane is zero, rather than the unmitigated release of methane.

2.4.6 Present value discounting

All modeled costs must be discounted to present value, in a variety of contexts, to account for

both the realistic cost of interest-bearing capital required for investments and the societal value of

delayed capital outlays, allowing for. A rich literature exists on the many dimensions of discount

rates, however, here we simply aim to address the risk-adjusted cost of capital for infrastructure

investments and the potential risk-free capital accumulation for delay of capital outlays.

For all capital investments, we use a weighted average cost of capital to amortize upfront capital

costs across the economic lifetime of infrastructure. The weighted average cost of capital here

represents a reasonable value for this illustrative analysis [177]. In practice, each candidate generator,

storage, or power-to-gas resource will have a different cost of capital based on the respective share of

debt and equity financing and the level of associated technical and regulatory risk. Further, consumer
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investments in appliances will experience a higher discount rate than corporate investments with

access to lower cost financing.

In the objective function, we use a societal discounting factor d, reflective of the societal value of

delaying costs. This value may range from 0% to 7% depending on the view taken by the modeler.

A higher societal discount rate will allocate greater weight in the objective function to near-term

transition costs and neglect long-term costs of the net-zero emissions end-state. A discount rate

of 0% will place much larger emphasis on the long-run costs of operating and reinvesting in the

decarbonized energy system. Discount rate assumptions will play a larger role in situations with

rapidly changing technology costs that may enable a more cost-effective long-term solution by relying

on infrastructure that are currently uneconomic.

Similar bipartite discounting framework have been employed in other energy systems planning

optimization programs to account for different contexts when discounting future dollars to present

value [178].

2.5 Case study implementation

To illustrate this approach to co-optimized system planning, we extend an integrated energy system

composed of the IEEE 24-bus electricity transmission network coupled with a 25-node pipeline

network from a previous study [38], which is shown in augmented form for this study in Figure

2.5. We modify this system with the addition of candidate electricity generators, net-zero emissions

gas sources, and energy storage units. We also explicitly model a set of appliance-level energy

demands and their candidate replacements. This indicative network allows us to demonstrate full

model functionality and illustrate how local heterogeneity in energy resource availability and delivery

networks can impact the cost-effective investment decisions.

All cost assumptions are inflation adjusted to consistent 2018 USD.

2.5.1 Sensitivity scenarios

We use and modify the program in Eq. (2.1) to evaluate the least-cost decarbonization path for

two indicative regional gas-electric networks, under two appliance-investment cases, and three gas

quality constraint formulations.

All sensitivity scenarios are presented in Figure 2.6 with a description of model formulation

adjustments adopted for each case.

First, we construct two gas-electric system load and renewable energy scenarios, representative of

two different climate regions in the United States: the Mountain Northwest, and the Coastal Pacific

regions. These two regions provide a diverse set of renewable resource availability and final energy

demand characteristics. Each system has unique energy demand characteristics (i.e., magnitude and
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Figure 2.5: Schematic of gas-electric energy system used in the computational study. Expansion
candidates are indicated at each bus (resp. junction) for the power (resp. gas) networks.
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Figure 2.6: Schematic illustration of the case study scenarios explored in this analysis and the
constraints added or removed from Eq. (2.1)
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temporal profile). Both systems have identical candidate units and network topology as presented

in Figure 2.5. The model formulation presented in Eq. (2.1) is solved for each system.

Second, we illustrate the impact of appliance investment planning. The most restrictive appliance-

investment case assumes a fixed appliance stock, replaced on a persistence basis to satisfy demand

growth, by enforcing Eq. (2.15). The second scenario introduces appliance-level investment decisions

for policy-driven electrification by removing Eq. (2.15) from the constraint set.

Third, we test three degrees of gas quality constraint implementation to illustrate the impact

of locational and temporal hydrogen blending limitations on the least-cost result. The first case

excludes all gas quality constraints, assuming gas infrastructure can accept any degree of hydrogen

blending. In the second case, we include Eq. (2.48) to ensure that over the course of each investment

year, the system-wide hydrogen injection does not exceed acceptable blend limits. Finally, in the

third case, we use the full formulation as presented in Eq. (2.1). This includes gas quality constraints

(Eq. (2.49) - (2.50)), introducing more granular spatial and temporal constraints on the blending of

hydrogen.

For all cases, we use high-performance computing resources in order to simulate full representative

years of operations for each of the five modeled investment periods (i.e., I = 5, R = 365, O = 24).

The problem is implemented in JuMP [179], a toolkit for mathematical programming in the Julia

language [180]. The solver used is Gurobi, which can directly solve the convex quadratic optimization

problem using a second order cone programming solver using interior point methods. The model

is solved on 128 core AMD 7742 processors with 800 GB of accessible RAM. Solve times for a 24-

node coupled network range from approximately 12,000 to 24,000 seconds (3-6 hours) depending on

problem classification.

Because of the computational complexity of the time-extended planning and operations co-

optimization, we adopt a key modeling simplification. Specifically, we fix gas pipeline flow directions

y(i,r),e = 1. In our opinion, this is an acceptable reduction in complexity for demonstration of the

method and to highlight broader features of such systems under deep decarbonization constraints.

However, future work should explore model reduction techniques to allow for tractable simulation

of such bi-directional gas flows (alongside detailed representations of operations) to adapt to an

evolving spatial allocation of low-carbon gas resources. This would add a large number of binary

variables and make the problem much harder to solve.

2.5.2 Data

Energy demand

Hourly profiles for baseline electricity demands are assumed for a Mountain Northwest (i.e., winter-

peaking) and a Coastal Pacific (i.e., summer-peaking) system, using simulated state-level electricity

demands from NREL’s Electrification Futures Study (EFS) [117]. Demand profiles for the Moun-

tain Northwest system are based on the aggregated state-level profiles of Washington, Montana,
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and North Dakota. For the Coastal Pacific system, we use data for California. Hourly electricity

demands are normalized to average annual energy consumption and scaled to the average nodal

energy demands presented in Table 2.6.

Base case nodal electricity demands (Mountain Northwest/Coastal Pacific)
Node Baseline Existing appliances Candidate appliances

Average
[MW]

Peak
[MW]

Average
[MW]

Peak
[MW]

Average
[MW]

Peak
[MW]

1 100 145/175 0/0 0/0 0/0 0/0
2 50 50/50 0/0 0/0 58.9/22.8 385/85
3 50 50/50 0/0 0/0 58.9/22.8 385/85
4 75 108/131 0/0 0/0 0/0 0/0
5 70 101/122 0/0 0/0 0/0 0/0
6 130 187/227 0/0 0/0 0/0 0/0
7 75 75/75 0/0 0/0 58.9/22.8 385/85
8 170 245/300 0/0 0/0 0/0 0/0
9 175 253/306 0/0 0/0 0/0 0/0
10 200 289/350 0/0 0/0 0/0 0/0
11 0 0 0/0 0/0 0/0 0/0
12 0 0 0/0 0/0 0/0 0/0
13 200 200/200 0/0 0/0 58.9/22.8 385/85
14 194 280/340 0/0 0/0 0/0 0/0
15 317 458/555 0/0 0/0 58.9/22.8 385/85
16 110 159/192 0/0 0/0 0/0 0/0
17 0 0 0/0 0/0 0/0 0/0
18 50 50/50 0/0 0/0 58.9/22.8 385/85
19 190 274/332 0/0 0/0 0/0 0/0
20 50 50/50 0/0 0/0 58.9/22.8 385/85
21 0 0 0/0 0/0 0/0 0/0
22 0 0 0/0 0/0 58.9/22.8 385/85
23 0 0 0/0 0/0 0/0 0/0
24 0 0 0/0 0/0 0/0 0/0

Table 2.6: Assumed nodal electricity demands for the network case study.

Gas distribution demands exist at nodes 6, 8, 12, 13, 18, 19, 24, and 25 on the pipeline net-

work. Each distribution node is assumed to have 50,000 residential customers and 2,000 commercial

customers, each of which use gas appliances for space heating and water heating. Half of these

customers are also assumed to have gas cooking energy demands. As noted in Section 2.3.1, the

gas and electric networks have disjoint sets of nodes. If electrified, the appliance energy demands at

nodes 6, 8, 12, 13, 18, 19, 24, and 25 on the gas system will operate at nodes 18, 22, 3, 15, 2, 7, 13

and 20 on the electricity network, respectively.

We assume the presence of baseline gas demands evenly distributed across the same set of gas

demand nodes that are not modeled at the appliance level. These are representative of potential

industrial or petrochemical demands that are not easily transitioned to direct-use of electricity but
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may compete with other core gas demands for limited climate-neutral resources. For this case study,

these are assumed to be constant across the year such that baseline gas demands equal 10% of system

average baseline electricity demand. In an industrial heavy case study this fraction could of course

be higher. These initial gas demands are characterized in Table 2.7.

Base case nodal gas demands (Mountain Northwest/Coastal Pacific)
Node Baseline Existing appliances Candidate appliances

Average
[MW]

Peak
[MW]

Average
[MW]

Peak
[MW]

Average
[MW]

Peak
[MW]

6 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0
8 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0
12 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0
13 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0
18 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0
19 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0
24 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0
25 27.5/27.5 27.5/27.5 164/80.6 528/372 0/0 0/0

Table 2.7: Assumed nodal gas demands for the network case study.

Legacy end-use appliances in the system include residential and commercial gas furnaces, gas wa-

ter heaters, and gas cooking. Candidate appliances include air-source heat pumps for space heating,

heat pump water heaters, and electric cooking alternatives. Total annual energy demand estimates

per household or per commercial building are based on the Energy Information Administration

(EIA) RECS and CBECS, respectively [94, 95], and are presented in Table 2.8. We assume annual

average gas and electric appliances efficiencies for template class-average appliances [97, 111, 105].

We use DOE building energy simulations to generate plausible hourly consumption profiles for space

heating, water heating, and cooking appliances [109] as described in Section 2.4. Further, we use

state-level simulations from [92] to generate plausible profiles for air-source heat pump operation

with reliance on back-up electric resistance during periods of extreme cold weather. For the Moun-

tain Northwest region, we use appliance demand profiles from Montana. For the Coastal Pacific

region, we use California building simulation data.

Appliance capital cost assumptions are based on a synthesis of Building Energy Optimization

(BEopt) data [111], commercially available technologies [112, 113, 114, 115, 116], and NREL’s EFS

[97, 117]. Installed cost assumptions for each appliance candidate are presented in Appendix A.2.

Energy supply

Existing generation units are inspired by the IEEE 24-bus data set, including a set of coal-fired,

gas-fired, and nuclear-powered generators. These legacy generators are assumed to retire naturally

at their expected lifetime (per Eq. (2.6)). Candidates for generation expansion include solar photo-

voltaics (PV), wind turbines, and natural gas-fired combined cycle generators equipped with carbon
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Residential Appliances (Mountain Northwest/Coastal Pacific system)
Technology Electricity

nodes
Gas nodes Existing

units [no.
per node]

Energy
demand
[MWh/
year]

Energy
efficiency
[%]

Gas furnace 2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

100,000 19/6 0.80

Gas water
heater

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

100,000 6/5 0.80

Gas cooking 2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

50,000 0.9/0.7 0.25

Air-source
electric heat
pump

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

0 7.6/1.4 2.0/3.5

Electric heat
pump water
heater

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

0 2.2/1.6 2.2/2.5

Electric
induction
cooking

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

0 0.45/0.35 0.50

Commercial Appliances (Mountain Northwest/Coastal Pacific system)
Technology Electricity

nodes
Gas nodes Existing

units [no.
per node]

Energy
demand
[MWh/
year]

Energy
efficiency
[%]

Gas furnace 2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

4,000 56/27 0.80

Gas water
heater

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

4,000 11/20 0.80

Gas cooking 2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

2,000 14/32 0.25

Air-source
electric heat
pump

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

0 22/6.2 2.0/3.5

Electric heat
pump water
heater

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

0 4/6.4 2.2/2.5

Electric
induction
cooking

2, 3, 7, 13,
15, 18, 20, 22

6, 8, 12, 13,
18, 19, 24, 25

0 7/16 0.50

Table 2.8: Assumed set of modeled appliance-level energy demands for network case study.
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capture (NG-CC+CCS). Each generator type requires assumptions for a range of characteristics in-

cluding fuel type, heat rate, maximum hourly ramp rate, minimum stable output, maximum stable

output, minimum up time and minimum down time, and year of entry into service (if an exist-

ing resource). These are presented in Table 2.2 and Table 2.9 presents the specific locations and

characteristics of all legacy and candidate generators in the network.

For hourly solar and wind availability, we use data specific to the regional system simulated.

For the Mountain Northwest system, we use historical data for solar and wind production from

the Northwest region of the United States (as defined by the EIA’s Operating System Dashboard

[90]). Total installed capacity for this set of balancing authorities in 2019 is estimated from EIA

Form 860 data to be 3.9 GW of solar photovoltaic and 13.9 GW of wind generating capacity. This

produces annual average capacity factors for 2019 of 17.6% for solar and 25.2% for wind. In the

Coastal Pacific system, we use data from the EIA Form 930 Operating Dashboard [90] for historical

solar and wind production for the year 2019. These generation values were normalized to total

installed capacity of solar (13 GW) and wind (6 GW) generators in the California Independent

System Operator (CAISO) balancing authority as reported in EIA Form 860 [126]. These sources

produce an annual average capacity factor of 24.6% for solar and 30% for wind. Assumed capital

and operating costs for electricity generators and fuel costs are referenced from the NREL’s ATB

for 2020 [127] as described in Section 2.4 and presented in Appendix A.2.

We include three kinds of net-zero emissions gas: biomethane, electrolytic hydrogen, and electro-

methane with operating characteristics specified in Section 2.4. For this case study, we limit annual

production of biomethane in the base case scenarios to not exceed 30% of total initial core gas

demands. All capital and operating cost assumptions are outlined in Section 2.4.

Energy storage

We model three technology options for electrical and gaseous energy storage, as described in Section

2.4.3. First, we model a short-duration electricity storage candidate based on 4-hour duration

lithium-ion battery technology [127, 147, 15]. Candidate lithium-ion batteries exist at nodes 1,

11, 12, 17, and 23 on the electricity system. Second, we model a long-duration electricity storage

candidate based on electrolysis paired with underground hydrogen storage [16] and a hydrogen-fueled

combined cycle gas turbine. Long-duration electricity storage candidates are assumed to exist at

nodes 1, 11, 12, 17, and 23 on the electricity system. Legacy underground natural gas storage fields

are assumed to exist at gas system nodes 3 and 14, and are sized based on the average facility in

the United States [152]. These facilities are assumed to be maintained to allow for seasonal shifting

of gaseous energy, with only modest losses from compression upon charging.

Note that electrical energy storage resources have no interaction with the gas network and gaseous

energy storage facilities have no interaction with the electric network. Therefore, the gas grid location

for electricity storage units (and the electric power grid nodal location specified for gas storage units)
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Electricity generators
Technology Electricity

node
Gas node Unit size

[MW]
Existing
units

Max. new unit
expansion (an-
nual/total)

Natural gas CT 1 1 50 10 2/100
Coal 1 1 200 1 0/0
Natural gas CT 2 1 50 10 2/100
Coal 2 1 200 1 0/0
Natural gas CC 7 19 100 10 1/100
Natural gas CC 13 24 100 10 1/100
Natural gas CC 15 13 100 10 1/100
Coal 16 1 200 1 0/0
Nuclear 18 1 500 1 1/1
Natural gas CT 22 8 50 10 1/100
Coal 23 1 200 1 0/0
Solar PV 1 1 50 10 2/100
Wind 1 1 50 10 2/100
Solar PV 2 1 50 10 2/100
Wind 1 2 50 10 2/100
Solar PV 7 1 50 10 2/100
Wind 1 7 50 10 2/100
Natural gas CC-CCS 4 19 200 0 1/1
Natural gas CC-CCS 13 24 200 0 1/1
Solar PV 13 24 50 10 2/100
Wind 13 24 50 10 2/100
Natural gas CC-CCS 14 13 200 0 1/1
Solar PV 14 13 50 10 2/100
Wind 14 13 50 10 2/100
Natural gas CC-CCS 15 13 200 0 1/1
Solar PV 15 13 50 10 2/100
Wind 15 13 50 10 2/100
Solar PV 16 13 50 10 2/100
Wind 18 13 50 10 2/100
Natural gas CC-CCS 22 8 200 0 1/1
Solar PV 22 8 50 10 2/100
Solar PV 20 8 50 10 2/100

Table 2.9: Network case study configuration of electricity generation units.
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Net-zero gas production units
Technology Electricity

node
Gas node Unit size

[MW]
Existing
units
[no.]

Max. new unit
expansion (an-
nual/total)

Biomethane 17 5 10 0 2/10
Biomethane 23 20 10 0 2/10
Electrolytic hydrogen 14 15 10 0 4/20
Electrolytic hydrogen 9 10 10 0 4/20
Electrolytic hydrogen 17 3 10 0 4/20
Electrolytic hydrogen 23 22 10 0 4/20
Electrolytic hydrogen 2 17 10 0 4/20
Electro-methane 14 15 10 0 2/10
Electro-methane 9 10 10 0 2/10
Electro-methane 17 3 10 0 2/10
Electro-methane 23 22 10 0 2/10
Electro-methane 2 17 10 0 2/10

Table 2.10: Case study network configuration of net-zero emissions gas production units.

Electricity storage units
Technology Electricity

node
Gas node Unit size

[MW]
Existing
units

Max. new unit
expansion (an-
nual/total)

Lithium-ion battery 1 1 10 0 5/200
Long-duration H2 storage 1 1 50 0 2/20
Lithium-ion battery 11 1 10 0 5/200
Long-duration H2 storage 11 1 50 0 2/20
Lithium-ion battery 12 1 10 0 5/200
Long-duration H2 storage 12 1 50 0 2/20
Lithium-ion battery 17 1 10 0 5/200
Long-duration H2 storage 17 1 50 0 2/20
Lithium-ion battery 23 1 10 0 5/200
Long-duration H2 storage 23 1 50 0 2/20
Lithium-ion battery 18 1 5 0 10/200
Lithium-ion battery 3 1 5 0 10/200
Lithium-ion battery 2 1 5 0 10/200
Lithium-ion battery 20 1 5 0 10/200

Gas storage units
Technology Electricity

node
Gas node Unit size Existing

units
Max. new unit
expansion (an-
nual/total)

Underground gas storage 1 3 1300 1 0/0
Underground gas storage 1 14 1300 1 0/0

Table 2.11: Case study network configuration of energy storage resources.
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does not impact results or operational behavior. All cost and operating characteristic assumptions

for these energy storage candidates are described in further detail in Section 2.4.3.

Transmission and distribution infrastructure

The gas and electric energy systems modeled here are toy systems inspired by the IEEE 24-bus

network and a indicative 24-node gas pipeline network designed by [38]. For completeness, the

modeled gas pipeline network topology is described in Table 2.12 and the modeled electric grid

topology is described in Table 2.13.

Origin
node

Terminus
node

Diameter [m] Length [m] Friction
factor

Max compression
ratio [MPa/MPa]

1 2 0.9144 100 0.01 2
2 3 0.635 30 0.01 1
3 4 0.635 5 0.01 2
4 5 0.635 15 0.01 1
5 6 0.635 10 0.01 1
5 7 0.635 5 0.01 1
7 8 0.635 10 0.01 1
2 9 0.9144 5 0.01 2
9 10 0.9144 60 0.01 1
10 11 0.635 5 0.01 1
11 12 0.635 8 0.01 1
11 13 0.635 6 0.01 1
10 14 0.9144 80 0.01 1
14 15 0.9144 10 0.01 2
15 16 0.9144 20 0.01 1
16 17 0.635 3 0.01 1
17 18 0.635 6 0.01 1
16 19 0.635 5 0.01 1
15 20 0.9144 40 0.01 1
20 21 0.9144 5 0.01 2
21 22 0.9144 20 0.01 1
22 23 0.9144 5 0.01 1
23 24 0.9144 16 0.01 1
22 25 0.635 8 0.01 1

Table 2.12: Case study network configuration of gas pipeline interconnections.

As described in Section 2.4, the incremental cost of non-modeled electricity distribution and

transmission infrastructure to serve peak demands is assumed to be $52/kWpeak-year and $21/kWpeak-

year, respectively [155]. Fixed costs of gas distribution system maintenance are estimated based on

Energy Information Administration (EIA) Form 176 filings by natural gas distribution companies

[160]. Using the distribution of 2019 data across all reporting gas distribution utilities, we assume

that fixed costs of gas distribution scale roughly with the number of core customers on each node.
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Origin node Terminus node Max rated
power flow
[MW]

Reactance
[p.u.]

1 2 175 0.014
1 3 175 0.211
1 5 175 0.065
2 4 175 0.127
2 6 175 0.192
3 9 175 0.119
3 24 400 0.084
4 9 175 0.104
5 10 175 0.088
6 10 175 0.061
7 6 175 0.061
8 9 175 0.165
8 10 175 0.165
9 11 400 0.084
9 12 400 0.084
10 11 400 0.084
10 12 400 0.084
11 13 500 0.048
11 14 500 0.042
12 13 500 0.048
12 23 500 0.097
13 23 500 0.087
14 16 500 0.059
15 16 500 0.017
15 21 500 0.049
15 21 500 0.049
15 24 500 0.052
16 17 500 0.026
16 19 500 0.023
17 18 500 0.014
17 22 500 0.105
18 21 500 0.026
18 21 500 0.026
19 20 500 0.04
19 20 500 0.04
20 23 500 0.022
20 23 500 0.022
21 22 500 0.068

Table 2.13: Case study network configuration of electricity transmission interconnections.
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In this work, we assume costs of $350 per residential customer per year and $1,200 per commercial

customer per year. This results in fixed costs of gas distribution Cdistn equal to $20 million per year

for each of the eight gas nodes which serve distribution-level demands. See Section 2.4 for further

information on these assumptions.

Energy policy constraints

Emissions constraints on the electricity system decline from a loosely constrained emissions intensity

of 500 kgCO2

MWh in 2020 to a deeply decarbonized energy system bound to 0 kgCO2

MWh on a net basis in

2040. A similar proportionate trajectory is followed in the gas sector from 200 kgCO2

MWh to 0 kgCO2

MWh .

This trajectory is modeled across 5 planning stages with interim targets as outlined in Table 2.14.

Identical emissions intensity targets are imposed across both regional systems and for all sensitivity

scenarios.

Emissions intensity target [ kg CO2/MWh]
Year Power Gas
2020 500 300
2025 200 150
2030 75 50
2035 25 15
2040 0 0

Table 2.14: Greenhouse gas emissions intensity targets for the evaluated investment time horizon
for the network case study.

Present value discounting

For all capital investments, we use a weighted average cost of capital of 7% (i.e. ιWACC = 0.07). The

weighted average cost of capital here represents a reasonable value for this illustrative analysis [177].

In practice, each candidate generator, storage, or power-to-gas resource will have a different cost of

capital based on the respective share of debt and equity financing and the level of associated technical

and regulatory risk. Further, consumer investments in appliances will experience a higher discount

rate than corporate investments with access to lower cost financing. In the objective function, we use

a societal discounting factor of 1% (i.e., ιsoc = 0.01), reflective of the societal value of delaying costs.

Sensitivity tests can be conducted to assess the sensitivity of results to discount rate assumptions.

2.6 Results & discussion

In all computational case study scenarios, we find the optimal decarbonization investment plan

includes a diverse set of renewable and low-emissions electricity generation sources. These electricity

supplies are complemented by development of short duration electrical energy storage to smooth out
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diurnal features in availability of weather-dependent generation. To satisfy emissions constraints in

the gas sector, we find biomethane resources are developed to their fullest extent, as constrained by

Eq. (2.63), and electrolytic hydrogen is blended to the maximum permissible fraction, as specified by

Eq. (2.49). In addition, in all cases, net-zero emissions gas resources are allocated for consumption

in the gas sector and by electricity generators. Fueling carbon-capture enabled gas-fired generators

with biomethane or electro-methane results in net negative GHG emissions per unit of electricity.

These arrangements are used to offset some of the emissions resulting from imperfect carbon capture

efficiencies and continued use of un-captured combustion turbines during times of low renewable

electricity generation.

When appliance stock co-optimization is considered alongside realistic hydrogen blending con-

straints, we find that direct-electrification of nearly all current gas distribution demands is a key

feature of the optimized system plan for deep decarbonization. However, the pace, timing, and

location of appliance investments will be determined by system-specific characteristics and will vary

across geographies with different weather patterns or local network topology constraints. However,

we find that misleading and structurally different investment plans can be obtained if integrated gas-

electric systems are naively planned assuming a static appliance stock or ignoring infrastructural

limits on hydrogen blending.

Here, we present the results of three sensitivity scenarios. In Section 2.6.1, we explore the differ-

ences between decarbonization strategies for test systems with different regional weather conditions.

Next, Section 2.6.2 highlights the importance of co-optimizing the distribution of final energy de-

mands and accounting for the natural failure and replacement cycle of existing appliance stocks.

Finally, in Section 2.6.3 we explore the impact of neglecting practical infrastructure limits on hy-

drogen blending and acceptable gas quality.

2.6.1 Regional climate zones

Regional weather patterns shape existing gas and electricity energy demands and will affect the least-

cost gas-electric system decarbonization pathway. Cost-optimal investment decisions will be affected

by the degree of coincidence of gaseous energy demands with both the availability of renewable

energy resources and the timing of the peak in existing electricity demands. In addition, heat pump

technologies for space heating perform less efficiently in colder regions, and reliance on back-up

resistance heat can create large winter peaks in electricity demand during extreme weather events.

As depicted in Figure 2.7, the Coastal Pacific system relies on a larger amount of solar capacity

(paired with more investment in electricity storage). The Coastal Pacific system has significantly

lower generation capacity needs overall as the electrification of gas appliances has a smaller impact

on peak electricity demands. Figure 2.8 shows the week of operations that contains each system’s

peak hourly electricity demand. The Mountain Northwest peak happens during a winter week (week

52 of the year, from December 24 to December 31]) with low solar output which drives a large need
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Mountain-Northwest Coastal-Pacific

Figure 2.7: Comparative results of time-extended planning optimization of a Mountain Northwest
(left) and Coastal Pacific (right) integrated energy system for capacity (top), generation (middle),
and gas production (bottom).
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Figure 2.8: Comparative results of hourly electricity grid operations of a Mountain Northwest (top)
and Coastal Pacific (bottom) integrated energy system for the week with the peak electricity de-
mand. Results presented include appliance investment optimization. Note that the Coastal Pacific
system peak occurs during the summer, when electrified gas demands are low, whereas the Moun-
tain Northwest system peak is further exacerbated by electrification during a time when renewables
output is low.
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for reserve gas-fired capacity. The Coastal Pacific peak occurs during a late-summer week (week 34

of the year, from August 14 to August 21 with high solar availability and minimal appliance-level

demands for space heating.

Figure 2.9 shows the appliance stock composition across the modeled investment time horizon.

Here, we see that the loading order in which appliances are optimally transitioned from gas to

electricity differs slightly between the two regions. In the Mountain Northwest region, cooking

energy demands are the first to begin the transition, while in the Coastal Pacific region commercial

space heating demands are preferentially electrified.

Mountain-Northwest Coastal-Pacific

Figure 2.9: Comparative results of appliance stocks for a Mountain Northwest (left) and Coastal Pa-
cific (right) integrated energy system. Results presented include appliance investment optimization.
In both climate regions, we find appliance electrification to be a feature of optimal decarbonization
pathways. However, the pace and sequencing of electrification investments differs depending on
system characteristics.

Despite minor differences in the interim trajectory, we find the final appliance stock for each

region is nearly identical. In both cases, the residual non-electrified demands include a portion of

residential space heating demands. This could be due to a range of factors including local transmis-

sion constraints, coincidence of these energy demands with poor availability of renewable electricity

generation, and/or the magnitude of capital costs relative to the potential emissions reductions.

Importantly, as presented in Figure 2.9, we find that premature retirement of some customer

equipment is a component of the least-cost investment trajectory. In part, this may be because

investment periods are evaluated at 5-year increments, exacerbating the step-function changes ob-

served in the appliance stock. However, this result is indicative of the kinds of energy demands
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that may be cost-effectively transitioned without waiting for emergency replacement at end-of-life.

In the both climate cases, we find residential water heating demands and commercial space heating

demands are preferentially electrified through premature retirements. However, a significant share

of customer equipment continues to leverage the gas system until fairly stringent emissions intensity

constraints begin to bind (and lower-cost net-zero gaseous fuel options have been fully exploited).

The pace and magnitude of appliance electrification specified by a central planner optimization

can be highly sensitive to system-specific characteristics. This case study presents just one result of

how the proposed modeling framework can jointly consider this array of factors endogenously and

alongside all other candidate decarbonization technologies.

2.6.2 Appliance investment planning

Central planning of appliance investments allows for optimized allocation of final energy demands

across energy carriers. Constraining the program to replace appliances on a persistence basis illus-

trates how systems may be naively planned based on the current distribution of customer equipment.

In these comparative scenarios, we find the magnitude and composition of the least-cost resource mix

changes depending on whether the appliance stock can be shifted across energy carriers to satisfy

emissions constraints at lower cost, as present in Figure 2.10.

Under persistence appliance stock assumptions, we find gigawatts of electrolytic hydrogen and

electro-methane units are developed to convert clean electricity to gaseous fuel for residential and

commercial demands. This scenario retains the smallest amount of flexible thermal generation ca-

pacity, retiring all legacy generators and building the least new gas-fired generation capacity. In

this system, power-to-gas units satisfy the role of dispatchable electricity generators to integrate gi-

gawatts of variable renewable energy generators. Power-to-gas units ramp flexibly to ensure demand

does not exceed supply, while satisfying all gas demands on a daily basis. This dynamic operation

of power-to-gas conversion and injection into the pipeline system is observed in Figure 2.11. Future

work should consider more detailed modeling of transient features in gas system operations to ensure

the planned system can be feasibly operated. A combination of on-site gas storage tanks and system

line-pack management will likely accommodate this flexible behavior, albeit at incremental cost.

With appliance investment optimization permitted, we find the optimal system plan shifts most

final energy demands to the electricity system to reduce the amount of net-zero emissions gas pro-

duction required. This results in a decreased need for generation capacity, even as final electricity

demand increases due to appliance electrification. We observe more fossil fuel capacity investments

in this case to satisfy electricity demand during times of low renewable energy output. Notably, some

production of electro-methane for direct consumption remains a component of the least-cost resource

mix. This result indicates that, despite the poor conversion efficiency of power-to-gas relative to

direct electrification, the incremental fixed cost of some appliance electrification may outweigh any

operational savings. This result also highlights the gas system’s potential dual value as an energy
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Figure 2.10: Comparative results of time-extended planning optimization of a Mountain Northwest
energy system with co-optimized appliance investments (left) and persistence appliance investments
(right) for capacity (top), generation (middle), and gas production (bottom). Naive system planning,
assuming static appliance populations, results in substantially larger generation and electrofuels
production capacity to supply residential and commercial gas demands with net-zero emissions
energy.
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Figure 2.11: Hourly dispatch for a simulated week of operations during a typical winter week (week
6 of the year, from February 13 to February 20) in a Mountain Northwest integrated energy system
for the two appliance-investment scenarios explored. Note that electro-methane units are operated
flexibly throughout the day to integrate intermittent renewable energy supplies, serving a similar
role that firm generation capacity does in the case with co-optimized appliance investments.
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transmission and energy storage asset. The flexibility to balance gas demands with less granular

temporal resolution (relative to electricity demands) allows the gas delivery network to double as a

short-duration storage resource for renewable electricity, converted to electro-fuels.

The volume of net-zero gaseous fuels, as presented in the bottom panel of Figure 2.10, is deter-

mined by the share of gas demands that are electrified, the quantity of non-electrifiable direct-use

gas demands, and the amount of net-zero emissions gas needed for use in the electricity sector. We

find that biomethane resources are developed to their fullest extent in all decarbonization scenar-

ios. We also find that net-zero emissions gases are routinely allocated for nominal consumption

across both the power and gas sectors. Nominal use of biomethane or other climate-neutral fuels in

carbon capture-enabled generators allows for negative emissions that offset some utilization of un-

captured gas-fired plants and imperfect carbon-capture efficiencies. An important contribution of

the proposed modeling framework is the endogenous evaluation of this cross-sector economic trade-

off between allocating available net-zero emissions fuels to the power or gas sector. Here, we show

that even as the system relies on electro-methane, there is sufficient value in the power sector to

allocate net-zero emissions gas for use in thermal generators rather than substituting this capacity

with additional renewable electricity generators.

Figure 2.12: Total system costs and average costs of delivered energy for each modeled investment
year for optimized appliance stock assumptions (left) and persistence appliance stock (right). In the
persistence appliance stock case, total system costs are increased due to a large need for expensive
electro-fuels to satisfy residential and commercial gas demands. These costs are avoided in the
optimized appliance stock case through centrally-planned electrification of gas appliances. Note also
that average costs of delivered gas increase 5-fold across the transition (in both cases for different
reasons) due to more expensive net-zero emissions gas supplies (left) and declining total gas deliveries
across which to recover fixed costs (right).

Examining the total system costs in Figure 2.12, we find that the persistence appliance stock

case has larger system costs primarily because of the costs of net-zero emissions gas. When the

appliance stock is co-optimized, the costs of net-zero emissions gas generation units and the elec-

tricity generation capacity necessary to produce these electro-fuels are reduced through appliance
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electrification. These savings exceed the countervailing increase in appliance costs and transmission

and distribution infrastructure costs on the electricity grid.

As highlighted in Figure 2.12, recovering fixed costs of gas distribution system maintenance,

operation and re-investment across declining gas deliveries produces an upward spiral in the average

cost of gas. If these costs are recovered entirely through volumetric rates, it is possible that this spiral

in gas rates will drive further defection from the gas distribution system, even if such a result is sub-

optimal from a societal cost perspective. As shown in Figure 2.9, gas appliances may continue play

a large role in serving space heating, water heating, and cooking demands until stringent emissions

intensity standards are in place on the gas sector.

The presented cost-minimization illustrates a practical approach to centralized planning of decar-

bonized integrated gas-electric energy systems. However, in practice, appliance investment decisions

will be made by a heterogeneous set of agents based on a confluence of economic incentives, regula-

tions, and consumer preference. The total societal costs will be allocated across and borne by gas

ratepayers, electricity ratepayers, and appliance-purchasing consumers. The allocation of societal

costs across different welfare-maximizing agents could produce a realized trajectory that confounds

the societal cost-minimizing plan. Future work should aim to examine approaches to cost-allocation

and rate-making that align the central planner solution with the welfare-maximizing behavior of

individual customers.

2.6.3 Gas quality and hydrogen blending

The introduction of pure hydrogen to natural gas infrastructure is one strategy to reduce the GHG

emissions intensity of gaseous fuel delivered to customers. However, gas interchangeability limits

generally apply to end-use equipment and materials integrity concerns exist for high-pressure trans-

mission, compression, and distribution equipment. Limited blends of hydrogen may be acceptable,

however the particular location and timing of such injections is important for ensuring safety of

downstream equipment. Here, we illustrate how relaxations in such gas quality constraints can lead

to different strategies for multi-sector decarbonization planning.

In Figure 2.13, we show that when no constraints are included on hydrogen blending, the least-

cost decarbonization trajectory includes a large reliance on electrolytic hydrogen. This solution

limits electrification of end-use appliances, displacing less than 30% of initial gas demand with

electric alternatives. This indicates that transitioning to energy infrastructure systems that can

accommodate high hydrogen fractions could provide system value in a decarbonized gas-electric

energy system (if savings exceed the incremental cost of compliant infrastructure).

The reliance on direct-use of blended hydrogen drops sharply when annual blend limits are

included at the system-level (see Figure 2.13 center). The level of centrally-planned electrification

in this case resembles that of the fully-constrained scenario with daily, spatially-resolved hydrogen

blend limits imposed. In the fully-constrained case (see Figure 2.13 right), we find the largest amount
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Figure 2.13: Comparative results for increasing degrees of hydrogen blend limits ranging from fully-
constrained hydrogen blending (left), to hydrogen blend fractions constrained on an annual, system-
wide basis (center), to un-constrained introduction of hydrogen (left). Results presented for a
Mountain Northwest integrated energy system with appliance investment optimization for capacity
(top), generation (middle), and gas production (bottom).
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of electro-methane is required to satisfy gas quality limits as hydrogen blending is further limited.
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Figure 2.14: Spatial allocation of capacity development in 2040 for three different approaches to
hydrogen blend limitations. Note that as we move from fully-constrained hydrogen blending (left)
to annual, system-wide blend fraction constraints (center) we see the spatial distribution of elec-
trolyzer capacity expansion shift towards from the most advantageous locations on the electricity
system as the gas quality constraints no longer retain the nodal limits. As we further loosen the
system constraints to unlimited hydrogen blends delivered (right), we observe significant increases in
electrolyzer capacity development as a smaller share of appliances are transitioned to the electricity
system.

In addition, the proposed model can identify the spatial distribution of least-cost expansion

investments and how these decisions are altered by constraints such as hydrogen blend limits. The

availability of clean electricity will be geographically concentrated in regions with large supplies

of low-cost renewable electricity generators. However, just as transmission constraints may exist

on the electricity grid, similar constraints are likely to limit the large-scale conversion of clean

electricity to hydrogen for blending directly into the transmission network due to local constraints

on concentration.

In Figure 2.14 we see that the unconstrained hydrogen blending case develops large electrolytic

hydrogen capacity in the most advantageous locations on the electricity transmission network. Incor-

porating annual, system-wide blend limits (see the center panel of Figure 2.14), we find electrolytic

hydrogen generation capacity decreases significantly paired with increased expansion of other lo-

cal biomethane or electro-methane production capacity. However, in the most constrained case

(left panel of Figure 2.14), using spatially-resolved, daily hydrogen blend limitations, we find that

while the most cost-effective or technically-favorable nodes see decreased investment in capacity for

electrolytic hydrogen generation, other nodes see slight increases to allow for distributed injection

accounting for the technical limitations of the gas network to accept hydrogen.

Future work should leverage models like this to further explore the system design space in order

to identify the potential role for gas system infrastructures that can accommodate high-blends of

hydrogen. Omitting gas quality constraints entirely (i.e., assuming full interchangeability) produces

a least-cost solution that relies heavily on direct blending of hydrogen and entails significantly less

planned electrification of core gas demands. Future work could compare the associated cost of
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upgrading downstream infrastructure to permit such hydrogen blends to the savings of relying on

less expensive electrolytic hydrogen as compared to drop-in synthetic electro-methane fuels or direct

appliance electrification.

2.7 Conclusions

As policymakers and businesses contend with the growing threat of climate change, energy providers

require new techniques and strategies for reducing the net GHG emissions of the gas and electricity

resource mix. Here, we propose a practical approach for co-optimized system planning of inte-

grated gas-electric energy systems. This novel formulation extends previously-published methods

for coordinated expansion planning and operations, with an enhanced focus on modeling the multi-

period transition trajectory, subject to legacy infrastructure limitations and successively tightened

constraints on GHG emissions. We demonstrate this method for an indicative gas-electric system

subject to sector-specific GHG emissions constraints under a range of sensitivity cases.

We find that direct-electrification of nearly all current gas distribution demands is a core com-

ponent of the optimized system plan for achieving deep decarbonization. However, we find that

misleading and structurally different investment plans can be obtained if integrated gas-electric sys-

tems are naively planned assuming a static appliance stock or ignoring infrastructural limits on

hydrogen blending. In appropriately constrained problems, the incremental costs of electric appli-

ances and any associated electricity system infrastructure are smaller than the additional costs of

electro-fuels production to serve the legacy gas appliance population. However, the pace, timing,

and location of appliance electrification is determined by system-specific characteristics and can vary

across geographies with different weather patterns or local network topology constraints.

Notably, electro-methane production is included in the cost-optimal investment plan prior to

full electrification of residential gas demands. This indicates that in some cases, despite the poor

conversion efficiency of electro-fuels (relative to direct electrification), the incremental fixed costs of

marginal appliance electrification may outweigh any operational savings. Finally, in all computa-

tional case study scenarios we find net-zero emissions gas resources are allocated for consumption by

power sector entities, indicating the value of biomethane and electro-fuels to provide firm net-zero

emissions electricity generation, offsetting net emissions from imperfect carbon capture efficiencies

and un-captured combustion turbines. It is important that future work on gas system decarboniza-

tion incorporate such cross-sector competition for limited sustainable net-zero emissions gaseous

fuels.

Finally, we observe that in all cases, the transition to a decarbonized energy system entails a

nearly 5-fold increase in the average costs of delivered gas. This arises due to some combination

of increased reliance on expensive electro-fuels for net-zero emissions gas supply and the declining

volumetric deliveries as gas appliances are transitioned to the electricity system. The allocation of
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societal costs across different welfare-maximizing agents could produce a realized trajectory that

confounds the societal cost-minimizing plan. Future work should aim to examine approaches to

cost-allocation and rate-making that align the central planner solution with the welfare-maximizing

behavior of individual customers.

The proposed modeling framework will accommodate a number of future investigations. The

sector-specific emissions constraint formulations will allow for study on the consequences of resource

limitations in sustainable bio-energy for optimal allocation across the power and gas sectors. In

addition, the approximate gas component tracking will allow future work to elucidate the role of

hydrogen blending for direct-use in pipeline systems. Finally, we note that planning decisions at

the consumer equipment-level are not made by a central planner, but by a series of agents with

economic incentives and personal preferences. Future analysis should leverage sequential or iterative

optimization routines to incorporate agent-based decision-making respective of evolving volumetric

rates for delivered gas or electricity. This study represents a first step towards practical system

planning of cost-effective, safe, and reliable integrated energy systems under strict greenhouse gas

emissions constraints.

2.7.1 Future model extensions

We recommend several model extensions to support future analysis of least-cost emissions mitigation

in integrated gas-electric energy systems.

Gas component tracking and quality In general, more robust formulations for gaseous fuel

component and attribute tracking may be necessary for analysis of multi-fuel systems with higher

blends of hydrogen or other non-methane gases.

The climate impacts of non-CO2 pollutants should be accounted for in future analyses. Methane

leakage from gas distribution systems will account for a larger share of life-cycle GHG emissions as

supply portfolios shift towards net-zero emissions gaseous fuels [176]. Further, as total throughputs

decline, it is possible that natural gas leakage quantities will grow as a share of total gas produced

and procured. Depending on the leak mechanism, maintaining a network of pipelines at pressure

may result in a fixed leakage rate that is only a weak function of total deliveries. However, calculating

the GHG impacts of leakage most carefully will require more rigorous component-tracking formu-

lations to differentiate the climate impact of hydrogen relative to methane or other non-methane

components.

In addition, the current modeling approach is not highly-resolved enough to account for the

impact of hydrogen blends on the operation and carbon capture-rate of gas-fired generators with

post-combustion CCS technologies. However, such model functionality will necessarily introduce

non-linearity as the variable carbon content of fuel delivered will be multiplied by the total fuel

consumed to compute the gross emissions from a gas-fired generator. In Appendix A.4 we present a
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preliminary model formulation extension to account for the well-mixed mole-weighted attributes of

gas delivered at various locations on the network.

Planning under uncertainty Accounting for low probability, high-impact events will be of im-

portance as the costs of such events can be astronomical. In particular, as we model the prospective

retirement or shut-down of gas distribution systems.

The maintenance and re-investment in gas distribution systems may represent a stranded asset

and a sunk cost. However, it also represents a hedge against an uncertain future that may include

higher costs renewable electricity due to transmission constraints, and lower-cost negative emissions

technologies for carbon removal offsetting continued use of fossil fuels.

A 1 in 100 year weather event, despite it’s low frequency, can alter the total system cost min-

imizing solution if the expected costs (economic and otherwise) of not having redundant energy

infrastructure during such tail events are disproportionately large. Future work on gas-electric

systems planning optimization should consider strategies to plan under uncertainty to account for

low-probability, extreme events.

Exploring liquefied gaseous fuel alternatives Redundant energy delivery infrastructure sys-

tems can provide immense value during power system failures. However, the total energy throughput

by such back-up energy systems will be small, with very high levelized costs of energy delivered.

For such systems, the primary variable of importance is the fixed costs of system investment and

maintenance.

It is possible that existing gas distribution systems provide a low-cost alternative for peak-

shaving and improving distribution system resiliency. Hybrid gas-electric appliances for space or

water heating can switch fuels to continue providing service during power outages, or during times of

scarcity in the electricity sector. However, hybrid liquefied petroleum gas (LPG)-electric appliances

may offer identical resiliency and reliability benefits as gas-electric hybrids without requiring the

maintenance and re-investment in an expansive (but low-throughput) gas pipeline system. Bio-

LPG and electro-LPG will rely on the same feed-stocks as biomethane (from gasification sources)

and electro-methane and may be produced at similar cost and complexity [142]. Future work may

consider introducing distributed LPG alternatives as a means to satisfy resiliency objectives and

offer flexibility during times of scarce renewable electricity generation.

Practical case studies The proposed model formulation should be put into practice for realistic

case studies of integrated gas-electric utilities or regions. As highlighted in Section 2.4, it can

be challenging to generate realistic data sets for gas and electricity infrastructure at meaningful

resolution due to security concerns and practical availability of data. However, even coarse study of

particular geographies and climate zones may elucidate the circumstances that support a future for

the gas distribution utility in a net-zero emissions energy system.



www.manaraa.com

92 CHAPTER 2. COST-OPTIMAL PLANNING FOR INTEGRATED GAS-ELECTRIC GRIDS

Model formulation extensions may be required to allow for more robust accounting of greenhouse

gas emissions liabilities for the practical set of gaseous energy end-uses. Specifically, combined heat

and power (CHP) facilities represent a key aspect of integrated gas-electric energy systems that are

not fully accounted for in the proposed modeling framework. Specifically, partitioning the cross-

sector emissions liabilities of a combined heat and power facility is a non-trivial accounting exercise.

However, this is of great importance as CHPs can account for a large share on gas demands delivered

to large commercial customers such as universities, hospitals, and other campuses. Accounting for

these gas deliveries and emissions liabilities in the above framework is challenging. Electrification

of the heat demands served by a CHP will also similarly increase electricity demands by an amount

equal to the power that was produced on-site from gas combustion.

Additional model formulation updates may be necessary to characterize each technology vintage

with different operational attributes, such as energy efficiency or fixed maintenance costs. Here,

we have collapsed all technology vintages into singular technology classes with uniform operating

attributes. This allows for substantive reductions in the number of decision variables required

for the computationally intensive stock-rollover simulation and optimization. However, for novel

technologies with quickly changing operating parameters, it may be prudent to include expanded

vintaging of equipment populations.

Lastly, future work should account for the realistic appliance adoption decisions made by private

actors that are not directly subject to the regulatory commission jurisdiction. The central-planner

optimization formulation is only useful inasmuch as it reflects a reality where a central regulatory

commission may approve or deny investment plans of regulated entities. However, for investment

decisions that lie outside of this scope, we must consider the interactions between the central-

planner solution and a welfare-maximizing behavior of unregulated entities. For appliance investment

decisions by private consumers, this is traditionally a parameter specification subject to sensitivity

testing. In Appendix Section A.6 we present characteristics of a preliminary model formulation for

endogenous evaluation of cost-allocation and rate-making strategies.
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Chapter 3

Molten-media pyrolysis design

optimization

3.1 Introduction

As noted by the 2018 Intergovernmental Panel on Climate Change (IPCC) special report on global

warming of 1.5 °C, net economy-wide greenhouse gas (GHG) emissions must decrease to levels near

zero by mid-century to minimize risk of catastrophic environmental and economic damages [181].

According to the International Energy Agency, carbon dioxide (CO2) emissions from the industrial

sector reached 24% of global emissions in 2017 [182]. Therefore, substantial reductions in industrial

sector CO2 emissions are required in order to mitigate climate change.

There are multiple technically feasible options for decreasing emissions from the industrial sector.

One option is the use of CO2-capture technologies to separate and permanently sequester CO2

produced from combustion of fossil fuels. However, the economics of operating these technologies at

small scale is challenging and retrofits are costly. The Global CCS Institute produces estimates for

the costs of CO2 avoided for a variety of CCS use-cases. For large-scale, post-combustion capture

for a natural gas fired generator, estimated costs are $89/tonne CO2 avoided [183].

Another option for decreasing emissions from some segments of the industrial sector is fuel-

switching to a low-carbon fuel such as hydrogen (H2) or leveraging low-carbon H2 for industrial

processes. H2 can be produced from steam methane reforming (SMR) combined with CCS (SMR-

CCS) or from water electrolysis. Recent academic work has estimated abatement costs for SMR-CCS

to be $100/tCO2 and for electrolysis from zero emissions electricity sources to be above $500/tCO2

at scales of 100 kilotonnes per year (kt/y) [184].

Regulatory policies have been introduced to motivate the development of emissions mitigation

projects. In support of CCS, the United States adopted the 45Q tax credits that increased incentives

93
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for CCS at industrial facilities, providing as much as $50/tonne of carbon dioxide placed in permanent

geologic sequestration [185, 186]. However, this incentive may not be sufficient for gigatonne scale

deployment of CCS technology [187]. Another supporting policy is the Low Carbon Fuel Standard

(LCFS) program in California, which has provisions to award credits for the use of renewable H2 and

incorporation of innovative, emissions reduction technologies at oil refineries to reduce the carbon

intensity of the transportation sector [188].

One emerging technology for emissions reduction is methane pyrolysis. Methane pyrolysis can

be used before combustion to split methane into solid carbon – which can be sequestered or used

– and an H2-rich gas that could be used in combustion applications or for chemical processes (e.g.

hydrotreating in oil refineries). Prior work on methane pyrolysis used solid catalysts to cause the

endothermic reaction to proceed at industrially feasible rates, however deposition of solid carbon can

quickly deactivate a solid catalyst [189]. One solution to this challenge is to use a bubble column as

the reaction environment, with a molten media providing an efficient heat transfer medium and acting

as a catalyst [190]. The generated carbon floats to the surface as a fine solid, avoiding deactivation

of the catalyst. This solid carbon can be transported to sites for permanent sequestration or sold as

a manufacturing feedstock. This could provide a flexible supply chain of carbon that could serve a

wide array of use cases. Further, this process may be applicable to a wider range of scales because

it is a comparatively simple process with a single vessel and disposal of the product does not require

a high-pressure pipeline network (i.e., solid carbon can be stockpiled and disposed at will).

In this work we evaluate the technoeconomic performance of a catalytic molten-media methane

pyrolysis systems via optimization of the energy system design. That is, we do not perform tech-

noeconomic analysis of a few set cases, but instead optimize high-level chemical process models of

the system to understand the technoeconomics of an optimal configuration. Using these results, we

provide insight regarding how methane pyrolysis might compete economically with other options

for reducing industrial emissions in two specific use cases: fuel-switching at distributed combustion

applications and substitution for conventional sources of H2 in oil refining. While engineering chal-

lenges remain regarding the high temperature separation of solid carbon from molten metals, purity

and microstructure of solid carbon for resale, and minimization of operational losses of the catalyst,

our work demonstrates at a high level that further research and development in these areas may be

warranted.

This work has been previously published in [21].

3.2 Background

Many technologies exist for the capture of carbon dioxide from flue gas streams. Capture mecha-

nisms generally fall into one of four categories: absorption, adsorption, cryogenic distillation, and
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membrane separation. After capture, CO2 is compressed to supercritical conditions and transmit-

ted via pipeline to sites for permanent geologic sequestration. Costs of CO2 transmission exhibit

significant economies of scale due to the large fixed costs of building pipelines [191]. In addition,

the large fixed capital costs of separation and purification equipment raises questions about the

economics of CCS operation at smaller, distributed scales. Enhanced oil recovery has provided the

largest market to date for captured CO2. Some proposals for net-zero-emissions energy systems of

the future include a carbon-neutral fuel produced from captured CO2 [4]. However, the options for

carbon utilization have been limited in the past by the low-energy state of CO2. Any value-added

chemical product will require substantial energy inputs.

Some industrial sector emissions can be attributed to emission of CO2 from material processing.

For example, between 50-60% of CO2 emissions from cement production result from the calcination

of calcium carbonate to calcium oxide [192, 193]. Additionally, the iron and steelmaking industry

accounts for 31% of industrial emissions, with a substantial portion of these emissions coming from

reduction of metal oxides with use of metallurgical coke [194]. However, much of the remainder of

industrial sector emissions are a consequence of combusting carbon-based fuels for heat and power

generation. In the United States over half of 2017 GHG emissions attributed to the industry sector

were a consequence of fossil fuel combustion [195]. In oil refineries approximately 65% of CO2

emissions are from fired heaters and boilers [196], and the largest emission source in the pulp and

paper industry is fired boilers [197]. As such, a nontrivial portion of GHG emissions from the

industrial sector could be mitigated by fuel-switching to low-carbon fuels such as hydrogen.

There are a variety of chemical processes by which H2 could be produced for fuel-switching in

industrial energy applications [198]. Fossil-based pathways use natural gas as a principal energy

feedstock to produce H2 while power-to-gas pathways leverage electric power as the primary energy

input to generate H2 by splitting water molecules. The most common commercial H2 production

method is steam methane reforming (SMR).

SMR is a two-step process consisting of the catalytic decomposition of methane into carbon

monoxide (CO) and hydrogen (H2) followed be the water-gas shift reaction converting the CO into

CO2 and H2. The methane decomposition is endothermic, requiring 206 kJ/mol CH4 while the

water-gas shift is slightly exothermic, yielding 41 kJ/mol CO. On net, this set of reactions will yield

4 moles of H2 for every mole of CH4 and require 41 kJ/mol H2 produced along with energy for

separation and heat exchange. However, in a carbon constrained future, SMR facilities would need

to be outfitted with CCS in order to mitigate CO2 emissions associated with the produced H2.

CH4 +H2O + 206 kJ −→ CO + 3H2 (3.1)

CO +H2O −→ CO2 +H2 + 41 kJ (3.2)
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An oft-suggested alternative is water electrolysis wherein an electric current is used to split water

molecules into H2 and oxygen (O2). While this can provide emissions free H2 if electricity inputs are

from zero-carbon sources, it is also a thermodynamically-unfavorable reaction, requiring 235 kJ/mol

H2 produced. Further, due to the substantial energy inputs, if the electricity consumed is not 100%

emissions-free, the carbon intensity of H2 from electrolysis can rival and exceed that of SMR.

H2O + 235 kJ −→ H2 +
1

2
O2 (3.3)

Methane pyrolysis is a chemical process where the carbon is stripped from the methane, yielding

gaseous H2 and solid carbon. This reaction is endothermic, requiring 75 kJ/mol CH4, and produces

two moles of H2 from every mole of methane, thus requiring 37.5 kJ/mol H2. Energy inputs for

pyrolysis could be provided through combustion of methane, releasing 0.05 mol. CO2/mol. H2

(assuming 85% LHV efficiency). Alternatively, produced H2 could be combusted to provide a self-

sustaining auto-thermal process, however this requires combustion of 18% of produced H2 to sustain

the reaction.

CH4 + 75 kJ −→ 2H2 + C (3.4)

However, pyrolysis technology traditionally involves a solid catalyst which can become deacti-

vated over time via deposition of carbon on the catalyst surface. The catalyst must be regenerated

[199], typically by oxidizing the carbon, which yields CO2 emissions and imposes additional costs.

Solid catalyst deactivation through sintering and unwanted solid-state reactions between the metal-

lic catalyst and the oxide support at elevated temperatures also occur [200, 201]. One technology

that may solve the some of the challenges associated with conventional methane cracking is using

liquid metals or salts as the heat transfer medium and reaction catalyst.

In 1930, Tyrer patented a continuous process for producing hydrogen via decomposition in a

molten iron bath, introducing air into a separate, but connected, chamber to oxidize the carbon

and fuel the endothermic pyrolysis reaction [202]. More recently, Steinberg proposed the use of a

liquid metal bubble column to facilitate the thermal decomposition of methane into hydrogen and

solid carbon [203]. Serban et al. conducted several experiments of methane cracking in molten tin

and lead baths, and Paxman et al. investigated the use of solar thermal energy to fuel a molten

media methane pyrolysis reactor [204, 205]. A transient bubble-scale model was built to simulate

the reaction kinetics and identify the residence time required for a desired methane conversion [205].

Similarly, Zheng and Xu conducted thermodynamic analysis of a system for hydrogen production via

solar thermally heated liquid metal methane pyrolysis [206]. Catalan and Rezaei presented a novel
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treatment that couples empirical hydrodynamic models from the literature with an equilibrium-

constrained kinetic model for non-catalytic methane decomposition [207].

Researchers at the Karlsruhe Institute of Technology have conducted a variety of experiments

and analyses of methane pyrolysis [189, 199]. Plevan et al. model methane decomposition with

a first order reaction kinetic and compare this to their experimental results [208]. Geißler et al.

conducted additional experiments on a liquid tin bubble column reactor with a packed bed and find

maximum hydrogen yields of 78% [209, 210]. Finally, Postels et al. published a life cycle assessment

of H2 produced via liquid-metal technology suggesting that methane cracking technologies could

realize 64% emissions reductions relative to steam methane reforming [211]. However, these non-

catalytic processes require longer residence times, requiring either a larger reactor volume or lower

CH4 conversion rates.

Upham et al. conducted the first experiments using liquid metal catalysts alloyed with low

melting temperature metals in order to convert methane into hydrogen and solid carbon [190]. The

characterization of the kinetics of reaction provide important data points for system-level analysis.

Utilizing an alloy of nickel (Ni) and bismuth (Bi), the authors observed methane conversion exceeding

95% at 1050 C [190]. Parkinson et al. present a technoeconomic analysis of a system such as this

for comparison with steam methane reforming and electrolysis for industrial hydrogen production

[184, 212]. Recent experimental work has demonstrated that molten salts (such as MnCl2-KCl) can

similarly act as catalysts for CH4 pyrolysis [213]. This study found high H2 selectivity and CH4

molar conversion efficiencies exceeding 40% with small residence times [213]. Other efforts to model

molten media methane pyrolysis reactors have employed a membrane bubble column reactor model,

identifying ultra-high conversion of CH4 and separation of H2 before the bubbles reach the top of

the reactor [214]. This reduces any metal losses that may be observed by vaporization. Molten salts

have also been used on top of molten metals to reduce metal loss [215].

Some industrial processes may not be well-suited for traditional CO2 capture techniques. Thus,

at the intersection of CO2 capture and fuel-switching lies a methane pyrolysis process that produces

H2-rich fuel gas to be used in industrial boilers and burners or as a direct substitute for more

carbon-intensive H2 feedstocks. Capturing the solid carbon also provides a material feedstock that

could serve multiple markets. This work presents a novel coupled hydrodynamic and kinetic model

formulation for a catalytic molten-media methane pyrolysis system. Leveraging this model, we use

optimization to evaluate the project economics of a molten-media methane pyrolysis technology

and illustrate how this technology may compare with more conventional options for decarbonizing

industrial energy services.
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3.3 Methods

3.3.1 Modeling molten media methane pyrolysis

To analyze the technoeconomics of a catalytic liquid-media methane pyrolysis system, we develop

a thermodynamic energy systems model and optimize design variables. The objective function to

minimize is the levelized energy price required to achieve a net present value (NPV) of zero at the

specified internal rate of return (IRR).

In this work, methane pyrolysis is modeled as depicted in Figure 3.1. The two use-cases explored

are fuel-switching of high-temperature combustion devices such as boilers or burners and blending

of low-carbon H2 for oil refining. The base case scale selected was 50 MWLHV to correspond to

an industrial boiler of 170 MMBTU/hour at 85% efficiency on a lower heating value (LHV) basis

[216]. This system produces approximately 10.4 kilotonnes of H2 per annum (kta). Such a system

could act as a modular unit that could operate between the natural gas pipeline and an existing

combustion device that has been retrofitted to accept gaseous fuels with large mole fractions of H2.

In the case of an oil refinery, this scale of production would be appropriate for displacing onsite

steam methane reforming at a small refinery or providing supplemental H2 capacity. The scales

of typical H2 production facilities co-located with oil refineries in California ranges from 40kta to

100kta [217]. Alternatively, the produced H2 could be blended directly into the natural gas pipeline

in order to reduce the climate impact of all downstream uses [146], although gas interchangeability

and pipeline integrity challenges remain in blending H2 into distribution pipeline systems.

The primary feedstock for the system is natural gas from the transmission pipeline at a molar

flow rate, ṅg0 [kmol/s], and a pressure, Pg0 [Pa]. For the purposes of this work, this stream is

assumed to be 100% CH4 as data for catalytic reaction rates are not available for the full profile of

hydrocarbons and other compounds present in pipeline-grade natural gas. A heat exchanger is used

to pre-heat the inlet stream of CH4, scavenging the sensible energy from the hot product gas, and

reducing thermal energy inputs to the reactor. The inlet temperature of the CH4, Tg0, is assumed

to be 10 °C and the inlet temperature of the H2 blend, Tg2, is assumed to be equal to that of the

reactor, Tr0. The exit temperature of the methane, Tg1, and of the hydrogen blend, Tg3, are design

variables determined by the optimization. In order to minimize any CH4 decomposition in the heat

exchanger tubes, the pre-heat temperature is constrained to not exceed 700 °C.

Tg1 ≤ 700 (3.5)

The energy balance between the gas streams is performed using the integral of empirical spe-

cific heat correlation equations provided in the Supporting Information (Appendix B) [218]. Mass
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Figure 3.1: Process block diagram depicting all components of the methane pyrolysis energy system
for decarbonization of industrial energy uses.

fractions of the hot gas are denoted as xH2 and xCH4 .

QHXR,C = ṁg1

∫ Tg1

Tg0

cp,CH4
(T ) dT (3.6)

QHXR,H = ṁg1

(
xH2

∫ Tg3

Tg2

cp,H2
(T ) dT + xCH4

∫ Tg3

Tg2

cp,CH4
(T ) dT

)
(3.7)

QHXR,C = QHXR,H (3.8)

The heat exchanger design is governed by the log-mean temperature difference (LMTDHXR) of

the gas streams. The heat transfer coefficient, UHXR is estimated based on correlations from Ulrich

(2004) for high-pressure, gas-gas heat exchangers [219]. The required heat exchange area, AHXR

[m2], is governed by the gas temperature design variables which determine the heat transferred,

QHXR [W]. We assume negligible pressure drop across this heat exchanger such that Pg1 = Pg0.
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AHXR =
QHXR

UHXRLMTDHXR
(3.9)

After pre-heat, the CH4 stream is introduced to the bubble-column, with a volumetric flow rate,

V̇g1 [m3/s], calculated according to ideal gas assumptions.

V̇g1 =
Ṅg0RTg1
Pg1

(3.10)

The reactor is a vertically-oriented pressure vessel with a volume, VR [m3], specified by two design

variables: a radius, R [m], and a height, H [m]. The fluid dynamics of two-phase bubble columns is a

topic of ongoing study [220]. While empirical correlation equations have been proposed to represent

the behavior of various bubble columns, few are directly applicable in the density regime indicative

of a liquid metal system. The correlations proposed by Kataoka and Ishii (1987) for gas holdup have

been experimentally validated in molten metal baths and are used in previous optimization modeling

of such methane pyrolysis reactors [221, 207]. The gas holdup is cast as a function of the superficial

gas velocity, jg [m/s], mean drift velocity Vgj [m/s], and a unitless distribution parameter for round

ducts, C0. Eq. (3.11) presents the gas holdup correlation equation for a system with no recirculation

of the molten media, and using dimensionless superficial gas velocity, j+g , and drift velocity, Vgj
+.

ε1 =
j+
g

C0j
+
g + V +

gj

(3.11)

j+
g =

jg(
σg(ρm−ρCH4

)

ρ2m

)0.25 (3.12)

V +
g =

Vgj(
σg(ρm−ρCH4

)

ρ2m

)0.25 (3.13)

C0 = 1.2− 0.2

√
ρCH4

ρm
(3.14)

Here, σ is the surface tension of the molten media (0.318 N/m for bismuth at 1000 °C), g is

the gravitational constant (9.8 m/s2), and (ρm − ρCH4
) is the difference between the molten media

density ( 9000 kg/m3) and the density of the methane entering the reactor (4.38 kg/m3 for CH4 at

1100 °C and 30 bar). Finally, we use the drift flux correlations for churn-turbulent flow and values
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of j+
g ≤ 0.5 as proposed by Ishii (1977) [222].

V +
gj =

√
2 for churn-turbulent flow (3.15)

The gas holdup at the reactor entrance ε1 is constrained to be no greater than 12.5%. Previous

work has assumed gas holdup of 25% at the column entrance, analogous with other commercial-scale

bubble columns [184]. In order to account for the mole creation and uncertainties associated with

bubble columns with such dense liquids, a more conservative approach is taken here which ensures

that even under 100% conversion of CH4 to H2, the gas holdup at the reactor exit will not exceed

25%.

ε1 ≤ 0.125 (3.16)

As the CH4 bubbles rise through a molten media with density ρm, increase in temperature, and

convert at a fraction ηCH4
to H2, the pressure drops to Pg2 and the volumetric flow rate expands

to V̇g2.

Pg2 = Pg1 − ρmgH (3.17)

V̇g2 =
(2ηCH4 ṅg0 + (1− ηCH4) ṅg0)RTg2

Pg2
(3.18)

The dynamics inside the reactor are modeled as a kinetically-controlled, plug-flow reactor in steady

state. The rate of reaction is modeled using the Arrhenius equation, informed by experimentally

derived kinetic data. From Upham et al., we use as our base case a Ni-Bi melt with 27 mol %

of Ni [190]. This reaction was found to exhibit an activation energy, Ea = 208 kJ/mol CH4 and

a pre-exponential factor, A, of 7.88*106 mL cm-2 s-1 [190]. These parameters can be modified to

represent various desired media, including molten salts as explored in recent work [213]. The rate

constant, k, is evaluated using the Arrhenius equation.

k = Ae
−Ea

kBTr0 (3.19)

The rate of reaction, r [mol s−1 m−3] is calculated by multiplying this rate constant by the

concentration of the reactants, in this case, CH4, and accounting for the reactive surface area per

unit volume. Assuming a population of spherical bubbles, the ratio of surface area to volume can

be applied to the pre-exponential factor.
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r =
3A

rb
e

−Ea
kBTr0 CCH4

(3.20)

As the concentration of CH4, the gas holdup, and the bubble radius are not constant across the

reactor, we apply a differential model for a plug-flow reactor to determine the CH4 molar conversion

efficiency, ηCH4 [kmol CH4 converted/kmol CH4 entering reactor]. The rate of reaction will equal

the change in molar flow of CH4 per unit increase in reactant volume.

dṅCH4

dVCH4

=
3

rb
A
(
e

−Ea
kBT

)
CCH4

(3.21)

We redefine the differential term for CH4 flow rate in terms of the change in CH4 conversion

efficiency ηCH4 (22) and similarly redefine the differential term for reactant volume in terms of

the reactor volume VR and gas holdup ε (23). The gas holdup throughout the reactor will be

proportionate to the CH4 conversion efficiency due to mole creation. We ignore the effects of pressure

across the reactor as, for the high pressure system explored, the effects of hydrostatic pressure of

the molten media will be small.

dṅCH4
= ṅCH4,0dηCH4

(3.22)

dVCH4
= εdVR = ε1 (1 + ηCH4

) dVR (3.23)

As noted above, the concentration of CH4 is also not constant across the bubble column reactor

and will vary as a function of the CH4 conversion efficiency achieved.

CCH4 = CCH4,0
1− ηCH4

1 + ηCH4

(3.24)

Similarly, as the bubbles react and decompose into H2 and carbon, the average bubble radius

will expand, increasing the catalytic surface area.

rb = rb,1 (1 + ηCH4)
1/3

(3.25)

Substituting Eqs. (3.22)-(3.25) into Eq. (3.21) and separating terms for integration, we produce

our constraint for ensuring CH4 conversion efficiency abides by the reaction kinetics of a differential
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bubble column (26). This model was also validated against the behavior of a plug-flow reactor in a

commercial process simulation software (Aspen HYSYS®) (see Appendix B).

∫ ηCH4

0

(1 + η)
1/3

1− η
dη =

3A ()CCH4,0VRε1
rb,1ṅCH4,0

(3.26)

As carbon will be continuously removed from the system, it is unclear whether equilibrium

concentrations will govern the maximum attainable mole fraction of H2 produced. Past experimental

studies suggest that continuous removal of carbon limits the reverse reaction, so we do not include

any equilibrium constraints [190]. Additionally, recent work has found that bubble column design

improvements can allow for H2 mole fractions that exceed equilibrium values [214]. To ensure that

adequate reductions in carbon emissions are realized, a constraint is imposed on the minimum molar

conversion of CH4, (ηCH4). A minimum molar conversion efficiency of ηCH4 = 90% is used in the

base case, and sensitivity is explored to increased purity requirements.

ηCH4
≥ η

CH4
(3.27)

Using the molar conversion efficiency of CH4 (η(CH4)), the product molar flow rate (ṅg2), and mole

fractions of H2 (yH2
), and CH4 (yCH4

), in the product gas can be calculated. A molar conversion

efficiency of 90% corresponds to a product gas mixture with 95 mol.% H2 due to the mole creation

of H2 and the precipitation of solid carbon.

ṅg2 = ṅg0 (2ηCH4
+ (1− ηCH4

)) (3.28)

yH2
=

2ηCH4

2ηCH4
+ (1− ηCH4

)
(3.29)

yCH4
= 1− yH2

(3.30)

Thermal energy input for the endothermic reaction is introduced to the reactor through electric

resistive heating elements lining the reactor walls. The resistive heating elements are silicon car-

bide (Si-C) elements with resistivity of 0.016 Ω-cm at 1100 °C [223]. The molten bath is assumed

well-mixed and isothermal at operating temperature. In the range of superficial gas velocities ex-

plored, the bubbly flow will be aptly characterized as turbulent with sufficient mixing to affirm the

assumption of isothermal conditions [207]. Resistive elements are encased in MgO-C ceramic layer to

insulate electrical current from the bath. As such, the temperature of the Si-C resistors is governed

by the required heat conduction through the MgO-C layer in order to maintain steady-state, and

constrained by the maximum operating temperature of such heating elements ( 1625 C per [224]).
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Heat transfers into and losses from the reactor are determined using a radial thermal conduction

model.

A layer of carbon insulation is included to ensure the outer pressure vessel temperature does not

exceed operating limits for carbon steel. This layered design is presented conceptually Figure 3.2.

All design temperatures for the reactor (Tr1, Tr2, Tr3, Tr4) are determined during model solve model

in order to satisfy the steady-state radial conduction model. This model ensures that enough heat

enters the reactor to drive the reaction and computes the heat loss from reactor side walls. The

amount of necessary heat input to the reactor is a function of the conversion efficiency ηCH4
and the

reaction enthalpy, ∆Hrxn, of 75 kJ/molCH4 as well as the amount of sensible heat required to raise

the temperature of the inlet CH4 stream from Tg1 to Tr0, for a mass flow rate calculated with the

molar mass of CH4, MCH4 . This heat input, Q̇(reactor, in) [W], must be driven by the temperature

gradient from the isothermal ceramic heating elements into the isothermal molten bath.

Q̇reactor = ∆HrxnηCH4 ṅg0cp,CH4(T )dT =
2πR2kMgO(Tr1 − Tr0)

LMgO
+

2πHkMgO(Tr1 − Tr0)

log
R+LMgO

R

(3.31)

A multi-layer radial conduction model is employed. In this manner, the rate of heat transfer out

of the ceramic layer can be calculated. The heat transfer through each layer is computed as part of

the constraint set during optimization. Solving this set of equations in steady state determines the

temperature at each layer and provides an estimate for heat losses from the reactor shell. The full

system of equations for the multi-layer conduction model can be found in Appendix B.

Q̇loss = Q̇steel = Q̇insulation = Q̇ceramic (3.32)

The elemental carbon saturates the molten bath and precipitates on any non-equilibrium surface.

Carbon accumulation on the surface of the liquid is removed primarily through entrainment in the

gaseous flow. As shown in Figure 3.1, a cyclone is used to separate the solid carbon from the

stream of product gas. The cyclone is sized based on the resultant volumetric gas flow rate leaving

the reactor, Vg2 [m3/s]. In order to ensure removal of the solid carbon through gas entrainment,

we introduce a design variable for the exit radius of the reactor, re [m]. An exit radius must be

found such that the superficial velocity of product gas leaving the reactor is large enough to satisfy

conditions necessary for homogenous, dilute phase entrainment of the generated mass flux of solid

carbon, Gs = ṁ(Csolid)/(πr2
eρp). The transition to homogenous dilute flow can be estimated at

the superficial velocity Vmp [m/s] using empirical models from Bi & Grace (1995) [225].

Vmp = 10.1(gdp)
0.347(

Gs
ρH2

)0.310(
dp
D

)−0.139Ar−0.021 (3.33)
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Figure 3.2: Concept diagram of resistive heating reactor design for liquid-media methane pyrolysis.
A representative cross-sectional temperature profile is displayed. Tr0 is the temperature of the
isothermal molten media. The Si-C resistive heaters are modeled as isothermal at Tr1. Tr2 is the
temperature at the MgO-C ceramic interface with the carbon black insulation, Tr3 is the temperature
at the insulation interface with the pressure vessel, and Tr4 is the temperature at the pressure vessel
interface with the ambient conditions.
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Here, dp is the particle diameter (0.1 mm), ρG is the density of the gas phase (0.55 kg/m3 for H2

at 1100 C and 30 bar), D is the diameter of the exit orifice (D=2re), and Ar is the Archimedes

number, as a function of the particle density ρp (2200 kg/m3 for solid carbon) and the gas viscosity

µG (1.84*10-5 for H2).

Ar =
ρH2

(ρp − ρH2
)gd3

p

µH2

(3.34)

The superficial gas velocity at the reactor exit is constrained to be greater than or equal to the

threshold velocity, Vmp.

V̇g2
πr2
e

≥ Vmp (3.35)

The flow of product gas is passed through a heat exchanger to recover the sensible energy and

preheat the inlet CH4. Any remaining fine carbon is removed with a bag filter, sized according to

V̇g2. The minimum thickness of the carbon-steel reactor shell is governed by the hoop stress equation

for a cylindrical vessel as specified by ASME BPV Code (Sec. VII D.1 Part UG-27) with a weld

efficiency, E of 0.85 and a max allowable stress, S of 88.94x106 Pa [226].

Ls ≥
Pr2 (R+ 2LMgO + Li)

2SE − 1.2Pr
(3.36)

Finally, we constrain the rate of low-carbon gaseous energy output to be greater than or equal to

that desired by the end use consumer. In this case, we use a 50 MWLHV boiler as the design

capacity, Cap, at efficiency, ηb, of 85% (on an LHV basis) as the modeled consumer, but this scale

can similarly represent supplemental H2 production of 10 kta for use at a refinery.

ηb (LHVH2MH2yH2 + LHVCH4MCH4yCH4) ṅg2 ≥ Cap (3.37)

3.3.2 Estimating levelized costs of operation

For a fixed production capacity capable of supplying a thermal load of 50 MWLHV , several design

variables of the pyrolysis energy system are determined with a nonlinear optimization program to

minimize the H2 price which yields zero net present value (NPV) at a fixed rate of return. The

optimization is implemented in Julia [227] utilizing the JuMP [180] framework and the Artelys

Knitro® [228] solver. As the problem is nonlinear with many locally optimal solutions, a multi-

start optimization method was employed to improve confidence that the proposed solution is a global

optimum: the global solution is assumed to be the lowest objective function constraint-satisfying

solution out of 200 randomly-seeded optimization runs.

The system is parameterized by pressure at the inlet, Pg0 (30 barg) and temperature inside the
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reactor, Tr0 (1100 °C). The model-selected design variables include the dimensions of the reactor

(height, H, radius, R and exit radius, re) and the thickness of insulation and steel reactor walls

(Li, Ls). In addition, the inlet molar flow rate, Ṅg0, and the gas temperatures Tg1 and Tg3,

are design variables (total design variables = 8). In order to solve the physics of the system,

supplemental decision variables are required such as the temperatures at each layer of the reactor

wall (Tr1, Tr2, Tr3, Tr4) and the achieved CH4 molar conversion efficiency, ηCH4 , and are computed

in-line to ensure that energy balance and molar conservation constraint equations are satisfied.

The total electric power consumption of the system can be computed by summing across com-

ponents. The ceramic resistive heat diffusion is assumed to be 100% efficient.

Pe− = Q̇loss + Q̇reactor + Ẇblower + Ẇcyclone (3.38)

The rate of gaseous energy introduced to the system, Pg,i, and low-carbon energy produced by the

system, Pg,o, are calculated.

Pg,i = HHVCH4
MCH4

ṅg0 (3.39)

Pg,o = (HHVH2MH2yH2 +HHVCH4MCH4yCH4) ṅg2 (3.40)

Further, the rate of carbon flow as solid carbon, ṁC,solid [kg C/sec], and in terms of CO2 emissions

equivalent sequestered, ṁCO2,seq [kg CO2/sec] are calculated as shown below.

ṁC,solid = MCηCH4
ṅg0 (3.41)

ṁCO2,seq = MCO2ηCH4 ṅg0 (3.42)

Using the above terms, we aggregate the annual OpEx [$/year] and the annual revenues, Rev [$/year],

using the capacity factor, cf , and the assumed price for solid carbon, p(Csolid) [$/tC], incentives for

sequestered CO2, p(CO2seq) [$/tCO2], and incentive for lifecycle CO2 emissions avoided, p(CO2av)

[$/tCO2]. Additional fixed operations and maintenance costs, FOM, are included to account for

labor and maintenance costs [$/yr]. Annual maintenance costs were estimated to be 3% of the total

capital requirement. For labor expenses, it was assumed that two shift operators would be necessary

to operate the facility, each earning $50,000 per year. Supervisory labor cost is assumed to be 25% of

operating labor expenses, and overhead expenses are assumed to be 40% of operating & supervisory

labor costs [226]. Labor costs are a small fraction (¡5%) of total annual cash flows. Molten media

losses have been observed in previous studies due to vaporization and deposition on the produced
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solid carbon [190]. Recent work has demonstrated that design choices such as employing a membrane

bubble column and/or incorporating a layer of lower density molten media (such as a molten salt)

above the reactive media can reduce the loss of catalytic material [214, 215]. However, such material

losses can have an outsize impact on project economics. As such, we treat these costs explicitly using

the commodity cost of the metal cm. We test sensitivity of results to various loss rates included as

contamination factors on the solid carbon flow exiting the reactor, ζm [kg metal/kg carbon].

OpEx = 3600
sec

hr
8760

hr

yr
cf

(
pe−

Pe−

3.6 MJ
kWh

+ pNG
Pg,i

1055 MJ
MMBtu

+ cmζmṁC,solid

)
+ FOM (3.43)

For simplicity of exposition, we introduce an additional term RevC for the revenues from carbon

emissions avoided, carbon emissions equivalent sequestered, and solid carbon sold:

RevC = pCO2,avṁCO2,av + pCO2,seqṁCO2,seq + pC,solid ˙mC,solid (3.44)

Rev = 3600
sec

hr
8760

hr

yr
cf

(
LCOE

Pg,o

1055 MJ
MMBtu

+
RevC

1000 kg
tonne

)
+ FOM (3.45)

Capital costs for most equipment are estimated from correlation equations in the chemical en-

gineering literature [219, 226]. The capital cost for the transformer is estimated based on reported

values from San Diego Gas and Electric to the California Independent System Operator [229]. Com-

ponents for which reliable costs could not be found were estimated from their materials or commodity

prices. All purchased cost estimates are escalated to 2017 US$ using Chemical Engineering Plant

Cost Indices (CEPCI). A full table of capital cost estimation equations can be found in Appendix

B.

The installed costs are estimated using the factorial method. The estimates for purchased cost

of equipment were adjusted using Lang factors meant to capture ISBL costs and offsites. A Lang

factor (LF ) of 8 was applied, however sensitivity to this assumption is also explored. A design &

contingency factor of 1.3 is applied based on values for a fluids-solids process referenced in [226].

The total capital requirement (TCR) of the system can be computed by summing the purchased

cost of each piece of equipment (PCe) which are all designated in Appendix B.

TCR = 1.3LF
∑
e

PCe (3.46)

With the above, we specify the net present value (NPV) of this energy system and employ a
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constraint such that NPV is equal to zero:

NPV =
∑
t

Rev −OpEx
(1 + IRR)t

− TCR = 0 (3.47)

The objective function of the optimization program is to minimize the levelized cost of energy

(LCOE), representative of the sale price of H2-rich fuel, subject to the above design constraints,

and the economic constraint that the net present value (NPV) equals zero. This optimization then

computes the effective break-even levelized cost of energy such that the system exactly covers its

costs with NPV of 0.

min LCOE

s.t. design constraints: (3.5), (3.27), (3.31) - (3.32), (3.36) - (3.37)

physical constraints: (3.10), (3.17) - (3.18), (3.28) - (3.30), (3.38) - (3.42)

heat exchange constraints: (3.6) - (3.8)

bubble column flow constraints: (3.11) - (3.16)

kinetic reaction constraints: (3.19) - (3.26)

carbon-gas flow entrainment constraints: (3.33) - (3.35)

economic constraints: (3.43) - (3.47)

(3.48)

In the base case, the nominal internal rate of return (IRR) is 15% and the lifetime of the project,

T, is 15 years, with an up-time capacity factor of 80%. All annual cash flows are assumed to

escalate with inflation, so the IRR represents the nominal weighted average cost of capital for the

project. Further, operating expenses include electricity costs at an assumed price of $40/MWh based

on the average wholesale electricity price observed in the California Independent System Operator

(CAISO) territory in 2018. Natural gas feedstock cost was assumed to be $6/MMBTU based on the

approximate industrial customer tariff from the Pacific Gas & Electric Company [230].

LCOE is evaluated on a higher heating value (HHV) energy content of gas basis, as this is typical

for the gas industry. However, this can be converted into a price of H2 in terms of $/kg for use

in a refinery. The project is also compensated by some combination of revenue-streams associated

with the generated carbon. In the base case scenario, we assume a value for pC,solid of $150/tonne

of solid carbon as sold as a feedstock for other manufacturing processes. Our base case includes no

value of avoided CO2 emissions however sensitivity scenarios test a credit of $50/tonne CO2 offered

based on (i) the tonnes of CO2 emissions avoided on a lifecycle basis (pCO2,av), or (ii) the tonnes of

CO2 emissions equivalent sequestered (pCO2,seq).

The lifecycle emissions avoided, ṁCO2,av [kg CO2e/sec], are computed as the sum of stack emis-

sions avoided and upstream emissions avoided, however these will vary depending on the end-use
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application. For the case of combustion applications, the stack emissions avoided are equal to the

difference in emissions from stoichiometric combustion of the produced H2-rich gas and a pure stream

of CH4 providing the same amount of energy. In order to account for the upstream emissions of the

proposed pyrolysis process, life-cycle factors are applied for the natural gas transported, βNG (15

gCO2e/MJ CH4 per [231]) and for the electricity consumed, βe− (162 gCO2/kWh e-), based on the

average carbon intensity of the 2017 California electricity grid [232].

ṁCO2,av =
ṁH2

LHVH2

LHVCH4
MCH4

MCO2
− EFNG

1000 g
kg

(
Pg,i −

Pboiler
ηboiler

HHVCH4

LHVCH4

)
− EFe−

1000 g
kg

Pe−

3.6 MJ
kWh

(3.49)

However, in the case of a refinery, both combustion and process emissions are avoided. As such,

we use emissions factors from the CA-GREET 3.0 model for gaseous hydrogen from centralized

steam methane reforming to account for all avoided stack emissions and upstream emissions. The

stack emissions from H2 production via this pathway, α(SMR−H2, stack) are estimated to be 85.7

gCO2e/MJ H2. The full life-cycle emissions from H2 production via the baseline SMR pathway,

α(SMR−H2, lifecycle) are estimated to be 100.5 gCO2e/MJ on an HHV basis [231].

ṁCO2,av = CISMR,stack (3.50)

Sensitivity of the levelized cost of energy was explored with respect to the price of natural gas, the

internal rate of return, the Lang factor, the value of solid carbon, the lifetime of the facility, the

capacity factor of the facility, and the price of electricity. Additionally, we consider cases where a

carbon emissions credit is available in various forms, including credits for life-cycle carbon emissions

avoided and alternatively credits for carbon sequestered, intended to represent the policy nuance of

the 45Q tax credits mentioned in Section 3.2.

Once a levelized cost of energy, LCOE, is found, it can be converted from units of [$/MMBTU]

into an LCOH in [$/kg H2] using the mass flow rate of H2 relative to the total rate of gaseous energy

produced. While impurities are still present, as post-processing separations and gas clean-up are not

included, this is intended to provide a useful point of comparison with other H2 cost estimates in the

literature for H2 from SMR or electrolysis. For both combustion and refining end-uses, additional

processes may be required to remove trace compounds generated during the high temperature, high

pressure molten-media methane pyrolysis process.

LCOH = LCOE
Pg,o
ṁH2

(3.51)

Finally, these cost metrics are converted to an equivalent abatement cost for the emitting fa-

cility, Cabatement [$/tCO2 avoided] by using the avoided stack emissions at the emitting facility
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Design parameter Optimal design value
Preheat heat exchanger area (m2) 9
Reactor internal radius (m) 2.2
Reactor height (m) 1
Reactor pressure vessel thickness (mm) 104
Reactor insulation thickness (m) 0.3
Preheat temperature (°C) 700
Reactor exit radius (m) 0.83
CH4 molar conversion efficiency 0.90

Table 3.1: Optimal design parameter results for the base case molten-media pyrolysis reactor energy
system.

and identifying the carbon tax that would be required for such a premium on energy or H2 to be

economical.

3.4 Results & discussion

For both the boiler and the refinery cases, the thermochemical pyrolysis system model is identical

as it is indifferent to the consumer of the gas. Further, the results of the economic model only differ

in cases where we consider carbon credits on the basis of emissions avoided, as these processes have

distinct avoided emissions based on the end-use of the product H2. Finally, the emissions abatement

costs (assessed on the basis of stack emissions avoided) will vary between the combustion and the

refinery use-cases as the two use cases have different avoided cost and emissions characteristics.

3.4.1 Energy systems design optimization

The numerical insights regarding process optimization for bubble column pyrolysis reactors are

tabulated in Table 3.1. In all cases, the optimal energy system includes a bubble column of radius

2.2 m and height 1 m. The optimal reactor height is dictated by the residence time required to

achieve the desired minimum CH4 conversion efficiency of 90%. A gas exit radius of 0.83 m is selected

to ensure homogenous, dilute phase transport of solid carbon via entrainment in the product gas

flow. The radius of the reactor was governed by the empirical models for gas holdup as a function

of superficial gas velocity and the constraint that gas holdup does not exceed 12.5% at the column

entrance. In order for this constraint to be satisfied, the radius had to be larger than the model

would have otherwise selected.

The system incorporates a heat exchanger to recover sensible heat from the H2-rich gas, preheat-

ing the inlet CH4 to 700 °C and producing the H2-rich fuel gas at a temperature of 523 °C after the

pre-heat exchanger. This heat exchanger recovers 4.1 MW of thermal energy. The optimal design

requires an electricity demand of 11.6 MW to power the reactor and 110 kW for ancillary electrical

loads. The electric resistive heating elements reach 1147 °C to maintain isothermal conditions inside
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of the reactor. This is well-within operating limits of such Si-C resistive heaters which can sustain

temperatures up to 1625°C and would require approximately 460 25 kW units each 1.5m in length

and 25 mm in diameter [224]. The 14 m circumference of the reactor should provide ample room to

accommodate these heaters. Internal resistive heaters could also be introduced, provided that they

are adequately protected from degradation in the molten media, but additional reactor volume may

be required to accommodate internals.

A layer of carbon insulation 0.3 m thick is included to manage heat losses and results in 244 kW

of thermal loss out of reactor walls, or 2.1% of the energy inputs to the reactor. A full accounting

of the energy flows into and out of the system is presented in Figure 3.3. In order to abide by hoop

stress limitations, the carbon steel pressure vessel requires a thickness of 100 mm. These optimal

design decisions remain unchanged across the sensitivity scenarios tested, and the fundamental

energy system design does not depend on the end-use of the produced low-carbon gas.

Figure 3.3: Energy balance diagram for pyrolysis energy system. Input and output flows at the
system boundary are displayed in MW. Internal transfers that are omitted include 4.1 MW of
thermal energy from the product gas stream to pre-heat the input gas stream. Numbers do not add
up to unity due to rounding errors as well as use of empirical specific heat approximations. Note
that the system is designed to provide 50 MW of thermal energy to an 85% efficient boiler (on an
LHV basis), so 69 MW of chemical energy (on an HHV basis) is produced.

3.4.2 Discounted cash flow analysis

Under base case assumptions, the estimated capital costs for the proposed energy system align well

with estimates from the literature for similar H2 production systems. Our proposed system has a

capital requirement of $28 MM for a capacity of 50 MWLHV which corresponds to 10.4 kta H2

or $2.70/kta H2 in the base case with 90% CH4 conversion. In terms of capital cost, Parkinson et

al. found a total capital requirement of $349.7 MM for a facility producing 100 kta of H2 at a 91%

on-stream factor, corresponding to $3.50/kta H2 [212]. Our capital estimate is slightly lower, which

is reasonable as the proposed system does not include any separation of H2 from unreacted CH4
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and uses a simpler electric heater targeted for small scale industrial heating applications. Given

the considerable uncertainties regarding the true costs of such a system, we consider this estimate

within the margin of error.

As shown in Figure 3.4, if levelized over the 15-year lifetime using a capital recovery factor for

the corresponding IRR, the annualized capital costs will be $4.8 MM, compared to annual operating

expenses of $17 MM. The amortized capital costs comprise just 25% of annual expenses, which

makes this system relatively insensitive to changes in the discount rate or lifetime of the equipment.

However, the investor will be exposed to trends in the price of operational feedstocks like natural

gas.

3.4.3 Levelized cost of energy and cost of abatement

The levelized cost of energy (LCOE) is shown for the full set of sensitivity cases in Figure 3.5. As

mentioned above, the majority of the economic sensitivity results do not change when evaluated for

different use-cases of the produced H2. Provision of carbon credits on the basis of lifecycle GHG

emissions avoided was the only sensitivity test that revealed differences between the combustion case

and the refinery case.

We also express the LCOE as the levelized cost of hydrogen (LCOH), or the necessary sale price

of the H2-rich product gas. Under most economic sensitivities, both costs are at a premium to

the costs of a baseline, emitting facility. For each use-case, the avoided stack emissions and the

premium in cost above the avoided baseline marginal costs are used to evaluate the equivalent cost

of abatement. This represents the tax on carbon emissions that would need to be imposed on the

emitting facility for such a premium on energy to be economical.

For the case of distributed combustion applications, we use the carbon intensity of the produced

H2-rich fuel relative to CH4 to calculate the stack emissions avoided by the industrial consumer,

ṁ(CO2av). The energy premium (above the assumed natural gas price) is expressed as an effective

abatement cost, in terms of $/tonne CO2 (Figure 3.6). For the case of a refinery application, we

estimate the cost of H2 from SMR to be the marginal cost of production of incremental H2, as fixed

costs of the plant are assumed to be sunk. Based on efficiency factors from CA-GREET 3.0, we

estimate an all-in efficiency of 1.38 MJ CH4/MJ H2. In the base case, with natural gas prices of

$6/MMBTU, this corresponds to $1.11/kg H2. This provides a benchmark from which to assess the

marginal abatement cost.

The LCOE for the base case assumptions was found to be $11.09/MMBTU of decarbonized gas,

which is equivalent to $1.75/kg H2. This represents a $5.09/MMBTU premium over the base case

price of natural gas. As such, for a combustion use-case, there would need to be a carbon emissions

tax of $115/tonne of CO2 imposed on the industrial consumer in order for this additional cost to

make economic sense. If applied to a refinery use-case, this corresponds to an abatement cost of

$52.60/tCO2.



www.manaraa.com

114 CHAPTER 3. MOLTEN-MEDIA PYROLYSIS DESIGN OPTIMIZATION

Figure 3.4: Annual cash flows for pyrolysis energy system in the base case (A) and under a vari-
ety of sensitivities (B-E). Selected sensitivity cases are natural gas prices ($3/MMBTU in B and
$9/MMBTU in C) and internal rate of return (10% in D and 20% in E). The levelized cost of energy
for each scenario is displayed in Figure 3.5
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Figure 3.5: Levelized cost of energy from optimized pyrolysis energy system across various sensitivity
scenarios. Sensitivities include natural gas price, internal rate of return (IRR), Lang factor, carbon
black value, carbon tax on the basis of emissions avoided (for both combustion (comb.) and refinery
(ref.) cases), carbon tax on the basis of emissions sequestered (seq.), lifetime, capacity factor, and
electricity price.

As an upper bound, we test the scenario where there is no value to the carbon and instead there is

an associated disposal cost of $10/tonne of solid carbon. In this case, the LCOE is $14.13/MMBTU

with a corresponding abatement cost of $183/tonne of CO2. In the case where carbon disposal incurs

a cost of $10/tonne carbon, the LCOH increases to $2.23/kg H2 and the estimated abatement cost

nearly doubles to $92.00/tonne CO2 avoided.

We also consider the specific case of a refinery in California using pyrolysis to generate H2 and

credits under the Low Carbon Fuel Standard (LCFS) program. We assume the refinery must pay

$10/tonne carbon to dispose of the produced solids and receives LCFS credits worth $190/tonne

CO2e avoided on a lifecycle basis. In this case, the levelized cost of H2 produced is $0.39/kg H2.

This lies below any reasonable estimate for costs of H2 from SMR and could provide substantial

returns. If the refinery is also permitted to sell the solid carbon into a secondary materials market

at a price of $150/tonne carbon, the levelized cost of H2 is estimated at -$0.08/kg H2. The negative

LCOH indicates that a positive NPV is provided solely from the revenues from carbon sales and the

LCFS credits. Therefore, as incentivized by the LCFS framework, there is a notable opportunity

for oil and gas industry to invest in clean H2 for the refinery processes [188].

However, in any case with sale of solid carbon coupled with carbon credits, there would need

to be rigorous verification that the solid carbon was permanently sequestered and did not return

to the atmosphere as carbon dioxide. For example, current solid carbon products from refineries

(petroleum coke) are sold to markets in Asia where they are burned for power generation. Secure
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Figure 3.6: Levelized cost of abatement across sensitivity scenarios for the case of a combustion
application (left) and a refinery application (right), evaluated on the basis of stack emissions avoided
by the industrial consumer.

disposal practice would need to be verified as avoided in order to claim both types of value for the

carbon.

All of the above results are presented for a system with a minimum CH4 conversion efficiency of

90%. This results in a product stream that is 95 mol.% H2. As it is unclear precisely what clean-up

equipment would be required to remove all of the trace compounds generated in a high-pressure

molten media pyrolysis process, we do not include any separations or gas clean-up processes on the

back-end. However, here we illustrate the changes in optimal reactor design and costs as desired

CH4 conversion efficiency increases from 90% to 99.99% for a fixed energy demand of 50 MWLHV.

Finally, these economic results were found to be highly sensitive to any catalyst losses via removal

with solid carbon. If the solid carbon is contaminated by as little as 0.0001 wt.% Ni-Bi, the process

becomes uneconomic with LCOE of $38.50/MMBtu. At 0.0005 wt.% contamination, the LCOE is

found to be $148/MMBtu. As such, great care must be taken to minimize and recover any catalyst

losses by either including a molten salt cap as suggested by Parkinson et al. or exploring alternative

approaches with lower cost catalytic materials.

With levelized costs of energy ranging from $9 to $15/MMBTU ($1.50 to $2.20/kg H2) and

equivalent abatement costs generally falling between $100 and $150/tonne CO2 avoided, we compare

these results to other retrofitted, “bolt-on” emissions reduction measures, including carbon capture

and other technologies for low-carbon H2 production. The Global CCS Institute produces estimates

for the cost of CO2 avoided for a variety of CCS use-cases. For the industrial boiler case, natural

gas-fired combined cycle (NGCC) power generation may be the most analogous case from which to

estimate CCS costs, with similar CO2 mole fractions to the industrial combustion use case. The

authors estimate the abatement costs for equipping a first-of-a-kind NGCC generator with CCS as
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Figure 3.7: Sensitivity of levelized cost of energy (LCOE) and optimal reactor height to increased
methane conversion efficiency requirements.

$89/tonne CO¬2 with real-world costs ranging from $80 to $160/tonne CO2 [183]. These estimates

also align with previous work of Rubin et al. [233]. The NGCC analyzed in this case had a net

power output of 630 MW with a net plant efficiency of 51.5%. We scale the estimated costs down to

act as a more direct comparison with the 50 MW combustion case (at 85% efficiency) explored here.

For example, using a scaling factor of 0.6, and scaling by mass of CO2 captured, the cost estimate

of $89/tonne CO2 scales up to $288/tonne CO2. This would place the methane pyrolysis system

examined in this work within the range of competition with more conventional CCS technologies

at small scale. However, it is difficult to compare these options as they rely heavily on site-specific

factors. In addition, retrofitting small-scale combustion appliances to enable carbon capture may be

more challenging than switching the burner to accept an alternative fuel like H2.

For low-carbon H2 production, options include steam methane reforming equipped with CCS

(SMR-CCS) and water electrolysis. Several studies have analyzed the additional cost of equipping

SMR facilities with CCS and have found a levelized cost of H2 to range from $1.22 to $2.81/kg H2

[212]. This indicates that the costs of pyrolysis-generated H2 are of the right order for magnitude for

competition with legacy larger-scale SMR facilities. However, the superior option will largely depend

on site-specific factors. For example, one additional benefit presented by a pyrolysis system would

be the modularity, which would allow for minimal retrofits to existing technology and processes.

Further, the production of solid carbon avoids the need for transmission pipeline infrastructure to

transport supercritical CO2 and could instead leverage train-based solids transport networks. This

may allow pyrolysis technologies to be deployed on a shorter time horizon than conventional CCS

technologies. However, even at the 50 MW scale explored here, the mass of carbon that would need
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to be sequestered or transported off-site is 31.3 kilotonnes per year.

Electrolysis has been analyzed in the past finding costs of $3/kg H2 ($22.31/MMBTU), which

exceeds any of our sensitivity results [212]. Further, if electrolysis employs electricity from a grid

with an average carbon intensity similar to that of California (162 gCO2/kWh), the carbon emissions

of the produced H2 will be 37 gCO2/MJ at a thermodynamic minimum. For the 2017 United States

average grid carbon intensity (426 gCO2/kWh), the emissions will be 98 gCO2/MJ, which is similar

to that of uncaptured SMR (100.5 gCO2/MJ per CA-GREET 3.0).

As a final case, we consider the case of retrofitting a plant with a new electric boiler. Using the

carbon intensity of the California grid (and assuming 100% efficiency) electrification would result in

emissions of 45 gCO2/MJ. If we employ the carbon intensity of the U.S. grid, the lifecycle emissions

will be 118 gCO2/MJ which is higher than the original 85% efficient boiler using direct combustion

(73 gCO2/MJ). If the boiler could leverage an emissions-free electricity source for all operations,

the lifecycle emissions of electrification would compete with that of a pyrolysis retrofit. Using the

operational expenses of pyrolysis, we estimate an upper bound on the electricity price at which an

electric boiler would compete with a pyrolysis unit (on a marginal cost basis) is $45/MWh.

Based on the relative cash flows, the LCOE and equivalent abatement cost are least sensitive

to changes in the lifetime, capacity factor, and IRR (or cost of capital). This could represent an

advantage over comparable CCS systems for which amortized capital costs make up the bulk of cash

flows [234]. However, this means that the LCOE is highly sensitive to changes in operating expenses,

such as the cost of natural gas, catalyst losses, or uncertainty regarding the future value of solid

carbon.

The results of the sensitivity cases also highlight the importance of policy design nuances for

carbon-capture projects. None of the retrofits results in a cost-competitive process in the absence

of incentives, however some policy intended to motivate CCS would improve the economics for

decarbonization. The current structure of the 45Q tax credits explicitly incentivizes the sequestration

of CO2 in the United States, rewarding projects on the basis of mass of CO2 sequestered. As such,

under the current language, this technology solution would not qualify to receive credits. Capture

and utilization of solid carbon would require flexible incentives that recognize carbon emissions

equivalent captured and sequestered. An additional consideration is whether policies recognize

carbon-capture projects on the basis of emissions sequestered or emissions avoided. If the policy is

designed to award credits on the basis of mass of carbon emissions sequestered there will be greater

value for combustion applications. However, if the credits award value on the basis of mass of carbon

emissions avoided, there is a substantial increase in the levelized cost of energy. This is because H2

has a lower energy content relative to CH4 and so the amount of emissions equivalent sequestered is

not necessarily equal to, and in most cases is greater than, the amount of emissions avoided. Finally,

depending on the structure of the carbon accounting, the end-use of the carbon could be important

in determining whether the projects could be awarded credits for the permanent sequestration of
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carbon or for substitution of an alternative source of solid carbon.

3.5 Conclusions

The proposed methane pyrolysis energy system may be one option for reducing greenhouse gas emis-

sions in the near term while continuing to leverage existing infrastructure and minimizing stranded

assets. The estimated emissions abatement costs of the pyrolysis energy system for small scale heat-

ing applications are similar to existing options for large-scale gaseous carbon capture and seques-

tration. In the case studies explored, results for the California transportation sector and California

refinery hydrogen, where substantial credits are available for avoiding greenhouse gas emissions, in-

dicate levelized cost of hydrogen could be as low as $0.39/kg H2 without carbon co-product value.

However, even modest amounts of catalyst losses can make the process uneconomic. While unique

engineering and design challenges remain and are unproven at any scale, a molten media-based

methane pyrolysis process may offer advantages with respect to carbon supply chain and utilization

of preferential economic characteristics and sensitivities.
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Chapter 4

Accounting for GHG emissions of

delivered electricity

4.1 Introduction

Accurately quantifying the embodied greenhouse gas (GHG) emissions of energy delivered to cus-

tomers is essential for climate policy implementation. Regulating emissions associated with delivered

electricity is further complicated by contractual arrangements for dynamic electricity transfer that

confound emissions accounting approaches rooted in the physics of grid operations. This accounting

exercise can be particularly challenging in the case of electricity transfers across regulatory jurisdic-

tions.

In Section 4.2, we evaluate a new methodology adopted by the California Energy Commission

to calculate the GHG emissions intensity of retail electricity providers. In the long run, the new

regulations better align with the physical nature of grid operation than did past practices, but

policymakers should monitor a set of potential challenges as market structures evolve. This work

has been previously published in [22].

In Section 4.3, we propose a novel consumption-based accounting methodology to reconcile the

nominal and the physical flows of electricity from generators to consumers. We also compare capacity

factor-based and regression-based approaches for estimating default emissions factors, in the absence

of fully specified nominal electricity flows. As a case study, we apply this approach to assess the

methods by which California regulators quantify specified and unspecified electricity imports and

their associated GHG emissions. Collectively, these efforts illustrate principles for a comprehensive,

empirical accounting framework that could inform efforts to improve the accuracy and consistency

of policies regulating regional electricity transfers. This work has been previously published in [23].

121
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4.2 Emissions intensity of retail suppliers

The Power Source Disclosure (PSD) program is a consumer information program administered by

the California Energy Commission (CEC) [235]. The PSD program requires load-serving entities

(LSEs) to publish and disseminate information on the mix of generation sources used to satisfy

their retail electricity sales in California. Regulated LSEs include investor-owned utilities (IOUs),

publicly owned utilities (POUs), co-ops that offer bundled service, and generation-only community

choice aggregators (CCAs).

4.2.1 Background

California Assembly Bill 1110 (AB 1110) was enacted in 2016 and required the CEC to update

the PSD program to report the greenhouse gas (GHG) emissions intensity of each LSE’s resource

portfolio [236]. GHG emissions are reported in terms of the metric tons of carbon dioxide equivalent

emitted per unit of retail electricity delivered [tCO2e/MWh]. The purpose of the PSD program

and the AB 1110 updates is to provide accurate, reliable, and simple to understand information

regarding fuel sources for electricity generation offered for retail sales in California, as well as their

associated environmental impacts [236]. Retail suppliers will begin disclosing the GHG emissions

intensity of their portfolios on the 2021 calendar year Power Content Label, based on their 2020

procurement.

The new regulations are notable not just for their inclusion of GHG emissions, but also for how

they respond to an important debate over how those emissions should be assigned. This question

is particularly relevant with respect to long-term renewable energy contracts and their associated

renewable energy credits (RECs) used for compliance with California’s Renewables Portfolio Stan-

dard (RPS). The debate reflects the fact that both the physics of power system operations and the

economics of wholesale electricity markets jointly determine the delivery of electric power to retail

consumers, but physical power flows frequently do not match contractual agreements. As a result,

LSEs can end up with a contractual (or nominal) supply of resources that does not fully align with

the electricity physically delivered to their customers.

The PSD regulations borrow key definitions from the state’s RPS. Both programs define elec-

tricity as being “delivered” to California if the underlying resource has a first point of interconnect

in a California balancing authority or is dynamically transferred to a California balancing author-

ity (as verified by e-tags from the North American Electric Reliability Corporation (NERC)) [235].

Procurement of qualified renewable energy from sources that are directly interconnected to a Cal-

ifornia balancing authority or dynamically transferred, with the corresponding NERC e-tags (i.e.

“delivered”), are designated as portfolio content category (PCC) 1 for RPS compliance. PCC 2

contracts, also referred to as “firmed and shaped” renewable procurements, involve renewable en-

ergy purchases that are delivered to a non-California balancing authority, but for which associated
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CARB – California Air Resources Board
CCA – Community choice aggregator
CEC – California Energy Commission
GHG – Greenhouse gas
IEMAC – Independent Emissions Market Advisory Committee
IEPR – Integrated Energy Policy Report
IOU – Investor-owned utility
LSE – Load-serving entity
NERC – North American Electric Reliability Corporation
PCC – Portfolio content category
POU – Publicly-owned utility
PSD – Power Source Disclosure
REC – Renewable energy credit
RPS – Renewables Portfolio Standard

Table 4.1: Acronyms

RECs are matched with an equivalent amount of energy that is scheduled for delivery to a Califor-

nia balancing authority. PCC 3 procurements refer to the purchase of “unbundled” RECs with no

associated energy procurement.

The difference between the physical operation of the grid and the contractual operation of en-

ergy markets has led to a debate over how GHG emissions should be assigned in policy systems.

Some researchers have suggested that emissions accounting could be based on purely physical flows

using tools like consumption-based accounting or marginal emissions analysis [237, 238]. In practice,

however, most legacy policy systems for renewable energy have relied, at least in part, on the use

of contractual accounting mechanisms like RECs. However, some policy experts have highlighted

the potential for the use of unbundled RECs to distort the true GHG emissions associated with

physically delivered electricity [239]. In addition, California’s Independent Emissions Market Advi-

sory Committee (IEMAC) observed the potential for “double-counting” of zero-emissions electricity

across different regulatory authorities if one agency accounts for emissions on the basis of physically

delivered power while another associates the nominal transfer of a REC with the emissions attribute

of electricity [240, 241]. Other stakeholders have argued that many contracting parties believe RECs

should be associated with a zero-GHG attribute and therefore any decision that treats RECs as not

including those environmental attributes could be problematic to existing marketplace actors [242,

243].

The PSD regulations focus primarily on reporting GHG emissions associated with the LSEs’

delivered electricity, rather than their nominally contracted resource mix [243]. Critically, the PSD

regulations require that LSEs’ reported emissions intensity of PCC 2 purchases should be that of the

delivered power, rather than the nominal, contractual procurement. This treatment extends to any

specified contract that allows for substitute power to be delivered, including contracts for electricity

from large hydro-electric generators that are not RPS-eligible but which otherwise fit the “firmed
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and delivered” contract model. As PCC 3 purchases are unbundled RECs and not associated with

the purchase of any power, they are not used to compute the fuel mix or GHG emissions intensity

of an LSE’s retail sales [235].

The PSD regulations’ focus on physical emissions accounting, as opposed to contractual emissions

accounting, has important implications for California’s long-term climate policies. California’s 100%

clean electricity law, Senate Bill 100 (SB 100), sets a 2045 target of having 100% of retail electricity

sales come from zero-GHG resources [168]. The CEC’s new methodology for calculating the GHG

emissions profile of LSEs’ retail sales could thus take on additional importance as state policymakers

develop an accounting structure and enforcement regime for the SB 100 target.

This section explores how the PSD program might perform going forward as a climate policy by

evaluating how the program reports GHG emissions intensity. Section 4.2.2 summarizes the CEC-

adopted calculation methodology, identifies the data and assumptions we use to estimate GHG

emissions intensities based on the CEC’s methods, and presents an alternative approach for calcu-

lating the GHG emissions intensity of an LSE’s retail sales, as originally proposed by a CEC staff

proposal [244]. Section 4.2.3 applies the calculation methodology to data from LSE-submitted sup-

ply forms to present a snapshot of potential emissions intensity values for a selection of California’s

largest LSEs. Because LSEs might decide to modify their procurement behavior in response to the

new regulations, we develop a simple snapshot of the outlook based on 2019 reporting that occurred

prior to the finalization of the regulations. Section 4.2.4 discusses some implications of the adopted

calculation methodology in the near and long term and draws conclusions about the updates to the

PSD program and provides recommendations for further analysis and monitoring.

4.2.2 Methods

CEC calculation methodology

The CEC’s methodology characterizes the energy mix for each LSE by aggregating its specified

electricity purchases on an annual basis. Specified purchases are transactions in which electricity is

traceable to specific generating facilities by an auditable contract trail, including associated e-tags.

Retail suppliers can employ annual data to meet this requirement instead of hour-by-hour matching

of loads and resources. Any specified wholesale sales must be deducted from each specified gross

purchase, per Eq. (4.1), to yield the specified net purchases NGi [MWh] for the year.

NGi = GPi −WSi ∀i ∈ SP (4.1)

We refer to an LSE as “under-procured” if its retail sales exceed total net specified purchases

and “over-procured” if it has net specified purchases that exceed its retail sales.

If an LSE has total specified net purchases in an amount less than their retail sales (i.e., is
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under-produced), then the remainder is assessed as unspecified power, per Eq. (4.2).

U = RS − TNP (4.2)

If an LSE has total specified net purchases in an amount greater than their retail sales (i.e.,

is over-procured), then specified net purchases must be decremented in an amount such that the

sum of all net purchases will equal total retail sales. The CEC’s method allows entities that are

over-procured to deduct natural gas specified purchases first, per Eq. (4.3a). If the natural gas

procurements are smaller than the difference between total specified purchases and retail sales, then

all other fossil-fueled purchases are decremented proportionately, per Eq. (4.3b). Finally, if the total

amount of adjusted net purchases still exceeds retail sales, the remainder of specified purchases will

be decremented proportionately, per Eq. (4.3c).

if 0 ≤ (TNP −RS) ≤ NPNG (4.3a) ANPi = NPi − (TNP −RS) NPi

NPNG
∀i ∈ SPNG

ANPi = NPi∀i /∈ SPNG

if NPNG ≤ (TNP −RS) ≤ NPNG +NPF (4.3b)
ANPi = 0∀i ∈ SPNG

ANPi = NPi − (TNP −NPNG −RS) NPi

NPF
∀i ∈ SPF

ANPi = NPi∀i /∈ SPNG ∪ SPF

if NPNG +NPF ≤ (TNP −RS) (4.3c) ANPi = 0∀i ∈ SPNG ∪ SPF

ANPi = NPi − (TNP −NPNG −NPF −RS) NPi

NPZ
∀i ∈ SPZ

A source-specific emissions factor, βi [tCO2e/MWh], is then applied to all adjusted specified net

purchases in order to evaluate the amount of emissions associated with this portfolio of electricity.

For any unspecified electricity purchases, a default emissions factor for electricity from unspecified

sources, βu [tCO2e/MWh], is applied. Dividing these gross emissions by retail sales yields the

emissions intensity estimate, EI [tCO2e/MWh] for the LSE portfolio, as per Eq. (4.4).

EI =
EFuU +

∑
i∈SP EFiANPi

RS
(4.4)

For specified purchases with the corresponding NERC e-tags that are delivered to a California

balancing authority, the source-specific emissions factor will reflect the emissions intensity associated
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with the contracted generator. As mentioned above, some specified purchases of RPS-eligible re-

newable energy fall under PCC 2 and PCC 3, which do not involve electricity purchases delivered to

a California balancing authority. PCC 3 procurements are excluded from the GHG emissions inten-

sity calculations, as these unbundled RECs are financial instruments that do not reflect electricity

procurement.

The PSD regulations specify that the emissions factor associated with “firmed and shaped”

PCC 2 purchases—or any similar contracts that allow for power to be delivered that is not from

the contracted source—should be that of the substitute (delivered) power, rather than the nominal

(contractual) procurement. Unless the generator of the substitute power is identified with the

associated e-tags, the delivered power will be deemed an unspecified import and assigned a default

emissions factor. Unspecified power includes all unspecified spot market purchases (including those

furnished by in-state generators), non-marginal imports from neighboring balancing authorities, or

power from renewable sources that has been separated from its REC (null power).

The PSD’s physical delivery accounting structure applies only to new contracts, with legacy

contracts that pre-date the regulation grandfathered under an accounting structure that is based on

contracted resources instead. For legacy contracts, LSEs must report the emissions associated with

the contracted resource, even if another resource is physically delivered to serve its customers. This

contract-based treatment applies until the underlying contract expires or is modified. Thus, once

all grandfathered contracts reach maturity or are modified, the PSD program will have shifted the

state’s retail electricity emissions accounting structure to one based on the physical deliveries.

Unspecified purchases are assigned a default emissions factor developed by the California Air

Resources Board (CARB) (βu = 0.428 tCO2e/MWh). CARB adopted this emissions factor in

2010, based on data from 2006-2008, and intended it to represent the marginal emissions associated

with electricity imports from unspecified sources on the Western Interconnect (WECC) [245, 246].

Although CARB maintains that this factor remains accurate today [188], others have argued that

the use of a static value based on data from 2006-2008 may not accurately reflect the operational

realities of the WECC today due to changes in fuel and technology costs [246]. Reflecting these

concerns, the IEMAC recommended CARB update its unspecified emissions factor [241, 240].

Estimating portfolio GHG emissions intensities

To explore the implications of the CEC-adopted methodology, we estimate what the reported emis-

sions intensity would be for some of California’s largest LSEs if the new methods were applied to

reported data from the CEC’s 2019 Integrated Energy Policy Report (IEPR) filings Forms S-1 and

S-2 [247]. More details on these forms can be found in [248]. The IEPR supply forms include any

contracts in place at the time of reporting and reflect actual procurement for 2017 and 2018 and

planned procurement for 2019-2030. Actual procurement for 2019 and beyond may differ from these

estimates, as contracts are transferred among LSEs in response to changes in retail sales forecasts.
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In addition, LSEs could also modify their procurement behavior in response to the new PSD regula-

tions or any new developments in western electricity markets. We analyze a static outlook based on

2019 reporting to provide one view of how the PSD labels for individual LSEs might evolve, rather

than to predict expected outcomes.

Our analysis uses generic emission factors for each reported fuel type—unlike the PSD regula-

tions, which apply source-specific emissions factors for each specified electricity purchase. For coal

and natural gas, we use the average emissions intensity of generators of each fuel in 2018: 0.981

tCO2e/MWh for coal and 0.415 tCO2e/MWh for natural gas [128]. This assumption overstates

the amount of emissions from some natural gas-fired generators, as some supply contracts involve

combined heat and power (CHP) plants that will report lower facility-specific emissions in practice.

Finally, as retail sales data are not publicly available for all LSEs, we use the firm load procurement

requirement from IEPR Form S-1 as a proxy for this value. The firm load procurement requirement

includes retail sales, utility uses, losses, and any wholesale obligations.

Some LSEs have redacted supply data for specific years or for the entire time horizon. In such

instances, persistence estimates are used to characterize the missing information. Most notably, this

is the case for the natural gas-fired procurements of Pacific Gas & Electric (PG&E) beyond 2018.

As such, we assume that the natural gas-fired procurements for PG&E will remain constant at 2018

levels. San Diego Gas & Electric only provides procurement information for the years 2017 and 2018

and consequently is not included in the forward-looking analysis.

In the case of an over-procured LSE, it is necessary to decrement specified purchases in order that

the contributions towards the portfolio sum to equal retail sales. The CEC’s adopted methodology

preferentially decrements first (1) specified natural gas and then (2) other fossil fueled purchases

before (3) non-fossil purchases. As an alternative approach, we consider a methodology that would

retain the proportionate representation of the full set of LSE-purchased resources. Instead of pref-

erentially reducing fossil resources over clean energy, this alternative method would reconcile total

specified purchases with retail sales by proportionately adjusting all specified purchases downward.

This method was originally proposed by the CEC, but (according to the Final Statement of Reasons)

elicited broad opposition from stakeholders who requested that the retail supplier be permitted to

assign its preferred resources to customers [249]. This is expressed mathematically in Eq. (4.5).

∀i ∈ SP, ANPi = NPi − (TNP −RS)
NPi
TNP

(4.5)

We also explore the treatment of firmed and shaped renewable energy contracts. The PSD

program evaluates the emissions associated with new firmed and shaped contracts with respect to

the substitute (delivered) power rather than the nominal (contractual) resource. But contracts signed

before the new regulations were developed are assigned the emissions of the nominal (contractual)

resource. We test the exposure of various LSEs to this policy decision, as well as the temporal
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effects arising from the turnover of older contracts into new or modified contracts. We assume that

all PCC 2 purchases identified in the IEPR supply forms will be grandfathered in and treated as

zero-emissions renewables, not evaluated at the emissions intensity of the substitute power. We test

the effect of treating PCC 2 procurements as unspecified power in order to characterize the extent

to which results may change if existing contracts were not subject to grandfathering.

4.2.3 Results & discussion

Applying the CEC-adopted calculation methodology to the data from 2019 IEPR supply forms, we

present the emissions intensity estimates for several of the largest California LSEs based on 2017

and 2018 procurement data in Figure 4.1.

Figure 4.1: Calculated emissions intensities for several large California LSEs.

Additionally, we present the outlook for emissions intensity estimates, based on reported procure-

ment plans and contracts in place from 2017-2030 (Figure 4.2). Any LSE with a 2018 procurement

requirement above 2 TWh was included in the analysis, subject to data availability constraints

described in Section 4.2.2.

Figure 4.2 illustrates three trends across different categories of LSEs. First, over-procured

investor-owned utilities like PG&E would expect to see favorable application of the CEC’s pref-

erential reductions of natural gas purchases—causing PG&E’s reported emissions intensity to drop

to zero before increasing in later years due to the scheduled retirement of its Diablo Canyon nuclear

generating units. In contrast, Southern California Edison (SCE) is expected to have constant emis-

sions intensity estimates based on currently reported supply data. This is due to a high reliance on

unspecified power and consistent under-procurement relative to their firm procurement requirement.

California’s third major IOU, SDG&E, has no public data available for this analysis.
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Figure 4.2: Calculated emissions intensities for the electricity supply planning forms submitted by
IOUs, CCAs, and POUs. Data for years 2017 and 2018 are reflective of actual procurement, while
the years 2019-2030 are reflective of planned procurement.

Second, several community choice aggregators—including Marin Clean Energy, Silicon Valley

Power, and Monterey Bay Community Power—would report very low GHG emissions intensities

in the immediate term, with emissions intensities rising rapidly in the early 2020s. Many of these

CCAs rely on firmed and shaped contracts that will be treated as zero-emissions electricity for

legacy contracts, but which would receive higher emissions factors associated with actual physical

deliveries for new contracts. Third, some publicly-owned utilities, such as LADWP and SMUD,

have emissions intensity values that trend downwards as planned shedding of coal-fired purchases

and increased share of zero-emissions energy drives declines in average reported emissions intensity.

Figure 4.3 provides additional insights into the effects of over-procurement among some LSEs.

This figure compares the results we project using (1) the CEC’s adopted method of preferentially

decrementing specified natural gas and then other fossil fueled purchases before non-fossil purchases

for over-procured LSEs, and (2) the alternate method we described in which all resources are decre-

mented proportionately. For most LSEs, the CEC’s adopted method generally biases emissions

intensity estimates downward from the true proportionate contribution of specified purchases. In

the case of Anaheim Public Utility, however, the preferential deduction of natural gas-fired purchases

biases emissions intensity upwards because this POU has significant coal resources in its planned

portfolio for most of the 2020s.

Taking this one step further, an LSE could report an emissions intensity of 0 tCO2e/MWh under

the adopted method by procuring an annual volume of zero-emissions energy equal to its retail sales,

regardless of when that generation is provided to the grid. Unless actual zero-emissions generation

(with or without storage) closely matches real-time demand, such an LSE would still need to rely on

additional procurement that would not be reflected in the reported emissions intensity. Figure 4.4

provides a stylized example. In the left panel, we calculate the emissions intensity for a hypothetical
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Figure 4.3: Comparison of estimated emissions intensity for major load serving entities that plan to
be systematically over-procured over the next ten years.

LSE with various annual portfolios of specified purchases and/or reliance on system power using (1)

the CEC-adopted methodology and (2) the proportionate deduction methodology. The right panel

illustrates how annual procured generation could align with retail sales in real time.

Figure 4.4: Left: Various portfolios of specified purchases and/or reliance on system power for a toy
load serving entity and the emissions intensity, as calculated by the CEC-adopted method, and using
a proportionate reduction for any over-procurement. Right: Illustrative temporal profiles displaying
how procured generation for each scenario could align with retail sales in real-time.

In scenario (a), annual retail sales are met by equal shares of specified zero-emissions and natural

gas purchases. If instead specified purchases from zero-emissions resources increase to equal annual

retail sales as in scenario (b), the CEC’s adopted methodology will report 0 tCO2e/MWh—even

if the LSE still relies on natural gas purchases to meet real-time demand. The CEC’s adopted

methodology will also not differentiate between scenario (b) and scenario (c), in which the LSE

utilizes storage (or other load-shifting strategies) to align zero-emissions procurement with demand

in real-time, irrespective of their very different consequences for electricity grid operations. The
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proportionate deduction approach, on the other hand, will result in 0 tCO2e/MWh if and only if an

LSE’s specified purchases come exclusively from zero emissions sources.

In scenario (d), the LSE meets real-time demand with unspecified spot market purchases, rather

than specified natural gas purchases as in scenario (b). In this instance, neither the CEC-adopted

method nor a proportionate reduction approach would allocate any emissions to the LSE, because

unspecified power assigned to an LSE is calculated as the aggregate difference between specified

purchases and retail sales. Improved temporal resolution, with hourly reconciliation of specified

purchases and retail sales for example, is required to capture the reliance on system power visualized

in Figure 4.4, scenario (d).

Finally, we evaluate the impact of grandfathering existing PCC 2 renewable energy contracts

designated as such by three CCAs in the supply forms used in this analysis. Figure 4.5 estimates

the GHG intensity of these CCAs’ portfolios if their legacy contracts were assigned the emissions

intensity of unspecified power, rather than renewable power under the CEC’s new rules. This change

has a substantial effect on 2017 and 2018 reporting, but the impact of this distinction quickly fades

as LSEs do not report many long-term contracts designated as PCC 2.

Figure 4.5: Alternative emissions intensity estimates for three community choice aggregators if PCC
2 renewable energy contracts are assigned unspecified power GHG emissions.

We note that this is an illustrative example of how sensitive the emissions intensity estimates

could be to the CEC’s decision to provide a more lenient emissions treatment for legacy “firmed

and shaped” contracts. We do not have information on the true source of the delivered power for

each of these firmed and shaped import contracts—which could plausibly be specified in some legacy

“firmed and shaped” contracts—but we believe that unspecified power emissions offers a reasonable

way to bound the possible range of impacts. While the impacts of this methodological decision could

be substantial for near-term reporting of emissions intensity for several entities, the supply forms

used in this analysis do not indicate that longer-term contracts for these resources will meaningfully

distort the emissions intensity reporting thereafter. In the future, we would expect that LSEs may



www.manaraa.com

132 CHAPTER 4. ACCOUNTING FOR GHG EMISSIONS OF DELIVERED ELECTRICITY

evaluate whether to modify their procurement behavior because of changes in the PSD program

regulations.

4.2.4 Conclusions

The CEC’s new Power Source Disclosure methodology fundamentally orients the reporting of LSEs’

GHG emissions intensities around the physical flows of power deliveries. As a means of establishing

an emissions accounting framework that is reliable in the long run, the new methodology constitutes a

meaningful step toward providing accurate, reliable, and simple to understand information regarding

fuel sources for electric generation offered for retail sale in California and the associated GHG

emissions. In the near term, however, GHG emissions intensities estimated by the new methods

might not fully reflect the portfolio of generation resources procured for delivery to serve California

customers for two reasons.

First, over-procured LSEs—most notably PG&E—are subject to preferential accounting rules. If

these LSEs remain over-procured for the next few years, it is possible that some will report artificially

low GHG intensities associated with the fact that they have procured a surplus of zero-carbon

resources relative to their loads and may be selling these resources to other LSEs on the spot market.

On the other hand, over-procured LSEs have generally been selling their procured resource contracts

to other LSEs whose customer bases are growing. While LSEs have no fundamental economic interest

in remaining over-procured, to the extent they are able to balance their supply and demand needs

through reselling in wholesale electricity markets—including possible future exports throughout and

expanded western market—then it is conceivable that some will maintain a procurement posture

that produces biased GHG intensity estimates under the PSD program. The pace at which resource

re-allocation progresses will likely determine whether this issue manifests at a meaningful scale.

A recent proposal could re-allocate large portions of the zero-GHG procurements from IOUs to

CCAs, which would alter the trends identified, potentially leaving the CCAs in an over-procured

position relative to their retail sales [250]. State regulators should be well positioned to monitor

these conditions and evaluate whether any methodological changes are needed in the future.

Second, the CEC made a policy decision to grandfather LSEs’ firmed and shaped contracts.

Legacy firmed and shaped contracts that provide non-zero-GHG delivered resources are treated as

having zero emissions for the purpose of the PSD program, even though new contracts with identical

provisions will be assessed at the emissions intensity of the physically delivered power. This decision

will tend to bias downwards the reported emissions intensity of LSE portfolios in most cases where

such contracts are present. Nevertheless, current supply data indicates that any such effects are likely

to be transient: as long-term supply contracts and retail electricity load are transferred between

IOUs and CCAs, the impact of these methodological decisions should be diminished because new or

modified contracts will be assigned the emissions of the power they physically deliver.

We note that all our analysis is based on data and projections made in the IEPR reporting
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process, which occurred prior to the final PSD program regulations. We anticipate that many LSEs

will evaluate how the new regulations affect them and may choose to modify their procurements

going forward. For example, firmed and shaped procurements may be less popular now that the

emissions intensity of such purchases will be calculated with respect to the delivered energy, rather

than the nominally contracted source. As a result, we would expect that actual procurement will

vary from what is projected in the 2019 IEPR planning process. Our results should not be interpreted

as a prediction, but rather as an empirically grounded scenario for exploring potential issues arising

under the PSD program requirements.

It is also possible that LSEs might adapt their procurement behavior to achieve artificially low

emissions intensity estimates under the PSD accounting methodology. For example, an LSE’s over-

procurement of long-term supplies relative to retail sales will tend to create GHG emissions intensity

estimates that are biased downward. LSEs are permitted to count any “delivered” electricity as a

specified purchase, which is broadly defined to include any generation with a first point of inter-

connection in a California balancing authority. It is likely that in the coming decades, enhanced

regional coordination will increase spot export of electricity from in-state renewable generators to

mitigate curtailment [251]. The current CEC-adopted methodology would allow LSEs to nominally

achieve zero emissions associated with retail sales while maintaining specified purchases of fossil-

fueled generation offset on an annual basis by an equal amount of over-procured renewables that

are exported to serve out-of-state load. This would represent a divergence between the regulatory

definition of “delivered” electricity and the electricity physically delivered to serve California cus-

tomers. Such an outcome could also create inconsistencies in interagency GHG accounting. For

example, the greenhouse gas emissions inventory conducted by CARB assesses emissions liabilities

that reflect all in-state generation and gross electricity imports [169]. In a high-exports scenario, the

CEC could report LSE emissions intensities approaching zero while CARB assesses nontrivial emis-

sions liabilities to electricity importers and/or in-state merchant generators. While the spot market

price risk of this financial position may not be attractive to LSEs, we offer this thought experiment

as an illustration of how the CEC’s new methodology could be exploited to bias reported emissions

intensities downwards.

This potential divergence could be remedied by moving towards an hourly accounting system

to reconcile LSEs’ procured generation supplies and retail sales. Under this framework, hourly

generation that exceeds demand would be credited according to the emissions avoided by displacing

system power, while demand that exceeds specified purchases would be assessed liabilities at the

emissions intensity of system power for that hour. This approach is taken for long term planning

of future energy systems by the California Public Utilities Commission in the Clean System Power

calculator [252]. In order to match this methodological approach in the PSD program, the nominal

allocation of historical hourly generation to retail load would require additional data reporting

from LSEs on the temporal generation of all specified purchases. In theory, generation curtailment
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could eventually create the incentive for LSEs to pursue improved hourly matching. By adopting

hourly accounting structures, however, policymakers could accelerate that trend, limit the nominal

concentration of emitting generation among unregulated segments of load (losses, self-consumption,

wholesale sales, exports, etc.), and improve consistency with other utility planning proceedings [253,

254].

The CEC’s adopted regulations also include an exclusion such that newly established CCAs

will not begin reporting the GHG emissions intensity of their retail sales portfolio until two years

following service of their first retail customers [235]. As additional CCAs form, the PSD program

will not produce public information during CCAs’ initial years, when customers are most likely

to decide whether to opt out of a newly formed CCA. CCAs often claim superior environmental

attributes relative to the incumbent utility provider, but the lack of clear information on emissions

characteristics during the initial phase of new CCAs’ operations—as well as potential bias in the

values reported for over-procured incumbents—could deprive consumers of relevant information.

In updating its Power Source Disclosure program, the California Energy Commission has taken

meaningful steps to improve the reporting structures for GHG emissions intensity associated with

retail electricity service to California customers. By assigning imported specified purchases of elec-

tricity the emissions associated with delivered power, the CEC aims to balance recognition of the

physical and contractual elements of electricity system operation.

We find that the PSD program’s methods are likely to produce a clear and reasonable basis for

evaluating the emissions associated with physical deliveries of retail power over the long run. In the

near term, however, two effects—both of which are likely transient—could lead to artificially low

reported GHG emissions intensities for some LSEs. First, the PSD program rules reward LSEs that

are over-procured by preferentially deducting the GHG emissions associated with emitting resources.

This allows over-procured LSEs to claim a higher share of zero-carbon resources than is present in

their total procurement profile. Until the process of re-allocating retail electricity load and long-term

supply contracts among LSEs is complete, the CEC-adopted methodology could allow several LSEs

to report artificially low emissions intensity estimates. Second, a decision to grandfather legacy

firmed and shaped contracts under a preferential emissions accounting method will tend to produce

artificially low GHG emissions estimates for LSEs that, like many community choice aggregators,

have relied heavily on contracts that include renewable energy certificates but physically deliver

other resources to retail customers. As these contracts reach maturity, however, the reported GHG

emissions of their replacements will be increasingly based instead on the power that they physically

deliver.

The PSD program’s primary use is as a customer-facing retail labeling program, but its account-

ing structure could also be applied to other state policies. Notably, SB 100 set a target for all LSEs

to deliver 100% of retail sales from zero-GHG resources by 2045. Because this target is expressed

in the same terms as the PSD program, it is possible that the PSD methods could be adapted or
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applied to inform an implementation strategy for SB 100.

Both in the context of evaluating the accuracy of the retail labeling program as well as any future

application to deep decarbonization policy, the PSD program would benefit from ongoing regulatory

monitoring and evaluation. As electricity markets evolve, some of the program’s methodological

choices could lead to unintentional bias that becomes more problematic than it appears today. For

example, if an export-intensive spot market develops and some LSEs remain contractually over-

procured, it might be possible that some of the challenges we identified in this paper become more

problematic. In addition, there may be important opportunities to improve the PSD program by

incorporating hourly analysis of generation and retail load matching, especially if this can be done

in coordination with other state agencies. Meanwhile, by shifting to a retail electricity emissions

accounting regime that is based on physical power deliveries, the PSD program is now set up to help

policymakers and LSEs navigate the direct climate impacts of their procurement decisions.

4.3 Emissions intensity of regional transfers

Regional coordination and dynamic transfer of electricity can allow for expanded use of low-cost

energy resources [164] and resource diversity can help improve reliability of electricity systems,

particularly as policymakers and utilities strive to achieve environmental goals [255, 256]. Such

interactions often cross jurisdictional boundaries, complicating the measurement of environmental

impacts and attribution of these impacts to regulated entities.

4.3.1 Background

Consumption-based accounting is one method popularized for tracking embodied greenhouse gas

(GHG) emissions across trade networks and allocating responsibility to consumers, rather than pro-

ducers [257]. Due to the indistinguishable nature of electrical energy after injection to the electricity

grid, consumption-based accounting is a useful mathematical tool for quantifying embodied emis-

sions associated with electricity deliveries in complex networked systems. The motivation for this

framework for electricity systems is conceptually outlined by Ji et al. (2016) [258]. Various studies

have since exploited the networked architecture of the electricity grid to estimate emissions factors

of delivered electricity using an input-output framework [259, 260], iterative methods [261], and

consumption-based accounting techniques [237].

In the United States, constitutional limits apply to state governments’ ability to regulate inter-

state, wholesale electricity transactions. State climate policies are designed, instead, to regulate the

composition of retail electricity sales [168]. Attributing emissions to retail providers according to

their electricity supply portfolio is complicated by the presence of nominal or contractual purchases

that deviate from a strict interpretation of the physics of electricity grid operation [235, 22]. A
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strictly physical interpretation of GHG accounting would assert that electricity injections to a syn-

chronously managed grid are indistinguishable from one another. It is a mathematical impossibility

to attribute a particular generation source to any specific customer as electricity does not flow from

a source to a sink; all generators work in concert to energize the grid and supply all demands. As

such, any deliveries from a balancing authority in a particular moment would have the emissions

attributes of the generation-weighted average emissions intensity of generators producing electric-

ity at that instant. However, electricity providers also enter contractual arrangements for nominal

delivery of electricity from specific generators with associated renewable or emissions attributes.

This joint nominal and physical nature of electricity delivery is reflected in the composition of

“specified” and “unspecified” purchases attributed to a retail supplier. Specified electricity pur-

chases can be traced to a unique generator with measurable emissions attributes. The emissions

consequences of this class of purchases are usually assessed on a nominal basis, directly allocating

the source-specific emissions to the entity purchasing the electricity. Unspecified electricity purchases

do not have a traceable contract path from a particular generator. Emissions intensity estimates for

unspecified electricity usually reflect a physical interpretation of electricity grid operations. Juris-

dictions may adopt a default emissions factor for unspecified purchases, intended to represent the

marginal emissions associated with incremental electricity generation from the originating control

area. Such techniques may use capacity utilization factors to estimate which plants may increase an-

nual output in response to increased demand for electricity [262]. Several academic papers have also

quantified the emissions impact of marginal electricity demand using regression-based techniques

[263, 264, 238, 265]. Such approaches may account for temporal variation in marginal emissions

attributes through independent analysis of similar time steps, segmented on an annual, monthly,

or hourly basis [263, 238, 265, 266]. Regional heterogeneity can be controlled for, to an extent, by

analyzing individual balancing authorities as opposed to entire synchronous electricity grids [267].

Physical paradigms for GHG accounting offer analytical clarity and consistency, but for these

methods to be useful they must coexist with the nominal arrangements and attributes which dif-

ferentiate electricity supplies. Accounting frameworks must balance the imperative for accuracy,

consistency, and clarity, and the desire to align economic incentives for market participants with

policy objectives.

California has committed to reduce statewide GHG emissions 40% below 1990 levels by 2030

[268], with even deeper targets for the electricity sector [269]. The electricity sector has also been

the single biggest driver of California’s falling statewide GHG emissions [270, 271] with changes in

the composition of electricity imports accounting for nearly 73% of the observed declines in electric-

ity sector emissions since their peak in 2008 [271, 272]. Although electricity imports play a critical

role in state climate and energy policy, they are not subject to a uniform accounting regime for GHG

emissions. The California Air Resources Board (CARB) regulates GHG emissions from electricity

imports in the state’s cap-and-trade program and tracks progress towards the state’s economy-wide
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climate goals. Imports are designated as either specified or unspecified in CARB’s Mandatory GHG

Reporting Regulation (MRR) [169], with distinct implications for emissions accounting. Because a

specified resource involves electricity contractually identified as transferred from a particular power

plant, CARB treats specified imports as having the source-specific emissions intensity of the known

out-of-state generator. To qualify as a specified import, the electricity must either have a point of

first interconnect within a California balancing authority or be dynamically transferred to a Califor-

nia balancing authority with importers holding the associated North American Electric Reliability

Corporation (NERC) e-tags to verify its delivery [169].

In contrast, unspecified imports lack a traceable contract path from their buyer to a specified

generation source. CARB assigns a default emissions factor to quantify the GHG emissions from

unspecified imports (0.428 tonnes CO2e/MWh). This factor is based on an estimate of which

generating units are likely to serve marginal load in the Western Interconnect (WECC), drawing

on analysis of data from Energy Information Administration (EIA) Form 860 and Form 923 for the

years 2006-2008 [241]. CARB’s default factor was estimated over a decade ago and has not been

updated since [246]. In 2018, CARB staff indicated that they had evaluated the accuracy of the

default emissions factor and concluded that no update was required [273].

Accounting differences also matter in the context of the broader western grid. Multiple Califor-

nia policies require that GHG emission reductions reported in the state do not result in increased

emissions elsewhere, a phenomenon known as “leakage” [168, 268]. Accounting for, and mitigating,

emissions leakage is a principal objective of any unilateral climate policy, whether economy-wide

[274, 275] or specific to the electricity sector [276]. In the electricity sector, leakage can occur on op-

erational time scales, due to changes in the generation dispatch schedule, or on planning time scales,

due to the reallocation of carbon-intensive resources to unregulated entities, a phenomenon known

as “resource shuffling” [277]. Implicit in any emissions leakage estimate is an assumed counterfac-

tual baseline scenario describing what would have happened in the absence of those climate policies.

Econometric [278] and equilibrium simulation techniques [279] have been used to characterize the

potential electricity sector emissions leakage consequences of California’s cap-and-trade regulations.

CARB does not assign an emissions leakage liability to specified imports in bilateral contracts

but does in the case of imports from the CAISO Energy Imbalance Market (EIM). Currently, the

CAISO EIM accounts for only a small fraction of imports—about 3% in recent years [280] - but the

role of regional trading is expected to grow significantly, especially as CAISO considers an extended

day-ahead market [240, 251]. Leakage is a concern in the EIM because the market preferentially

allocates zero-emissions energy for nominal transfer to serve California load, which could result in

secondary dispatch of emitting generators to serve out-of-state load. CARB and CAISO collectively

aim to quantify and mitigate emissions leakage from the EIM today by (1) limiting the bid of a

participating generator to a deviation from their committed base schedule and (2) treating this

transfer as “unspecified” for the purposes of emissions accounting in an annual true-up [281].
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Policy efforts are already underway to harmonize some of these inconsistencies, but the under-

lying reasons for these differences and opportunities for greater consistency have not been well-

characterized in the academic literature. In California, three disparate accounting mechanisms are

employed to measure the GHG emissions impacts associated with specified electricity transfers,

unspecified electricity transfers, and the emissions leakage consequences.

New techniques are needed to reconcile the nominal and physical flows of electricity from genera-

tors to consumers to provide accurate information to customers about their retail provider’s portfolio

and to assess liabilities in climate policy enforcement. This paper proposes a novel methodological

framework that allows for harmonized GHG accounting, recognizing both the nominal and physical

attributes of electricity supply, including electricity from unspecified sources, and estimating emis-

sions leakage impacts outside of the regulated jurisdiction. As a case study, this chapter analyzes the

GHG accounting methods in use for electricity imports by California agencies to assess consistency

with the best available evidence and methods. Collectively, these efforts illustrate principles of a

comprehensive, empirical accounting framework that could inform efforts to improve the accuracy

and consistency of policies regulating embodied emissions of interregional electricity transfers to

California and across the West.

We present a two-part analysis. First, we propose a novel consumption-based accounting frame-

work that (1) respects known contractual procurements of specified electricity transfers, (2) isolates

the margin of unspecified electricity transfers and its associated emissions intensity, and (3) estimates

GHG emissions leakage factors in a consistent manner for all specified electricity transfers. The re-

sult of this analysis is compared against a purely physical consumption-based accounting baseline,

as well as the current accounting framework applied by California regulators. Second, we compare

capacity factor-based and regression-based approaches to estimate marginal emissions factors for

unspecified electricity transfers, for use in the absence of fully specified nominal electricity flows.

Section 4.3.2 reviews our methods and data, and Section 4.3.3 reports our results and Section 4.3.4

discusses their policy implications.

4.3.2 Methods

Estimating GHG emissions of electricity transfers

Contract-adjusted consumption-based accounting A consumption-based accounting frame-

work can be used to quantify the embodied emissions associated with electricity transfers, as demon-

strated by de Chalendar et al. (2019) [237]. This method assumes that each balancing authority

delivers undifferentiated electricity at every moment, and therefore that the emissions intensity of

each MWh of delivered electricity is equal to the generation-weighted average of local generators and

positive transfers to that balancing authority. The gross emissions, Ei,t [tonnes CO2] embodied in

electricity generated at a given balancing authority (i ∈ B), in a given time step (t ∈ T ), equals the

sum of all generators’ committed dispatch, Pg,t [MWh] multiplied by their source-specific emissions
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factors, αg [tCO2/MWh] for all generators in balancing authority (g ∈ Gi ⊂ G).

Ei,t =
∑
g∈Gi

αgPg,t (4.6)

Any embodied emissions transferred to the balancing authority are calculated as the product of

flows into the balancing authority, ui,t [MWh], multiplied by the emissions intensity of electricity

delivered in the sending balancing authority, xi,t [tCO2e/MWh]. These embodied emissions entering

the balancing authority must equal the sum of embodied emissions as delivered to local demand at the

balancing authority, di,t [MWh] and as delivered to export transfers to other balancing authorities,

vi,t [MWh].

Ei,t +
∑
j

xj,xui,j,t = xi,tdi,t +
∑
k

xi,tvk,i,t (4.7)

In addition to the above mass balance, an energy balance is imposed at every balancing authority.

∑
g∈Gi

Pg,t +
∑
j

ui,j,t = di,t +
∑
k

vk,i,t (4.8)

Substituting and rearranging, we produce the linear system that can be solved for x in every time

step.

xi,t

∑
g∈Gi

Pg,t +
∑
j

ui,j,t

−∑
j

xj,tui,j,t = Ei,t (4.9)

The embodied emissions imports associated with the historical operating schedule can be determined

for a desired balancing authority (or set of balancing authorities, b ⊂ B through vector multiplication

of the emissions intensities and the electricity transfer vector for that balancing authority.

IG =
∑
t∈T

∑
i∈B̂

∑
j

xj,tui,j,t (4.10)

This consumption-based model evaluates the average embodied emissions of electricity interchanges

on a physical basis. To account for the nominal characteristics of electricity supply and regulation, we

introduce a novel contract-adjusted consumption-based accounting approach where known specified

electricity transfers λg,i,t [MWh/hour] (from source generator g ∈ G to sink balancing authority

i ∈ B, in time step t ∈ T ), and their source-specific emissions are removed from the system of

equations. All specified imports are dynamically transferred to the destination balancing authorities.

As such, the implications of this nominal distinction can be explored with the physical consumption-

based model by removing the associated generation, interchanges, and emissions, and re-assigning
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them mathematically to the destination balancing authority.

E∗i,t =
∑
g∈Gi

αg

Pg,t −∑
j∈B

λg,j,t

+
∑
g∈Gi

αgλg,i,t (4.11)

Inferred nominal transfer pathways for each specified transfer are parameterized in the matrix, α

with elements specified in Eq. (4.12).

αg,i =

1 if transfer path for g includes i

0 otherwise
(4.12)

Contract-adjusted electricity import transfers u∗i,j are calculated using Eq. (4.13).

u∗i,j = ui,j −
∑
g∈Gi

∑
k∈B

αg,iλg,k,t (4.13)

xi,t

∑
g∈Gi

Pg,t +
∑
j

u∗i,j,t

−∑
j

xj,tu
∗
i,j,t = E∗i,t (4.14)

Emissions intensity values found by the solving system of equations in Eq. (4.14) can be interpreted

as the average emissions intensity for the margin of unspecified electricity delivered by each balancing

authority. Note that for this interpretation to be strictly accurate, all specified procurements (for

which the source-specific emissions attributes are claimed by a regulated entity) would need to be

known and accounted for across all jurisdictions.

These accounting exercises can be done independently for each operating interval across the year

to calculate the emissions intensity of electricity delivered in each balancing authority and across

each interchange. Alternatively, an annual average can be computed by summing all transfers,

generation, and emissions across the year, and solving a single system of linear equations. For each

unique interchange, an annual calculation will only capture the emissions implications of net transfers

across the entire year, rather than the gross transfer that would be represented by independently

solving for any gross embodied emissions imports that occur across each operational time step.

Estimating emissions leakage for specified electricity transfers The proposed contract-

adjusted consumption-based accounting computation also provides average emissions factors for

electricity delivered in neighboring balancing authorities, excluding the distortive effects of any

generation that is contractually designated for transfer to a different jurisdiction. These emissions

factors represent the emissions intensity of electricity that could have otherwise been displaced by

nominally transferred generation. This quantity offers one plausible counterfactual for assessment
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of emissions leakage consequences. Any electricity importers procuring specified electricity transfers

with a lower emissions intensity than that delivered by the generator’s resident balancing authority

could be considered liable for this difference as emissions leakage.

Li =
∑
g∈G

λg,i max{0, xi − αg} (4.15)

CARB’s current cap-and-trade program addresses leakage in different ways, depending on the

type of electricity transaction involved. CARB makes no leakage estimation for in-state electricity

generation nor for specified imports cleared for dynamic transfer in a bilateral or day-ahead context.

In contrast, CARB treats imports from the CAISO Energy Imbalance Market as though the “true”

delivery is unspecified electricity [273, 241]. When an out-of-state clean energy resource is dispatched

via the CAISO EIM to serve California load, CARB reasons, then other emitting resources are

dispatched to serve the out-of-state load that the clean energy resource might have served if it were

not selected for dispatch to a California balancing authority. To account for this leakage, CARB

makes importers responsible for the difference between the source-specific emissions from the nominal

resource dispatched by the CAISO EIM market algorithm and CARB’s default emissions factor for

unspecified electricity. Thus, the full cap-and-trade liability imposed on electricity importers is

assessed as though all CAISO EIM imports reflect unspecified electricity, rather than the particular

resource CAISO EIM deems delivered to serve a California balancing authority.

The “true” value for leakage cannot be observed, varies by plant and context, and likely lies

above a value of zero (implicit in CARB’s approach for any specified imports scheduled for delivery

outside of the EIM). The approach explored here can be thought of as one plausible scenario for

comparison.

Data Hourly data on net generation and electricity transfers were obtained from EIA Form 930

[90]. Imputed and cleaned hourly electricity demand data are used from Ruggles et al., (2020) [91].

Data on hourly emissions from fossil-fueled plants were obtained from the Environmental Protection

Agency (EPA) Continuous Emissions Monitoring System (CEMS) through the Air Markets Program

Database (AMPD) [131]. Finally, annual data on emissions for each plant and balancing authority

were obtained from the EPA’s Emissions & Generation Resource Integrated Database (eGRID)

2016 [282]. A more thorough discussion of data cleaning efforts can be found in the Supplemental

Information (Appendix C).

We used California Energy Commission (CEC) Power Source Disclosure (PSD) data for the

years 2016 and 2017 to generate a list of specified imports from plants across the WECC [283].

Reconciling CARB’s GHG emissions inventory [284] with the CEC’s PSD reporting for 2016 and

2017 and the Qualified Fuel and Energy Resources (QFER) [285] produced a list of 38.9 TWh and
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38.1 TWh of specified imports, respectively, that have identifiable source EIA Plant IDs and resident

non-California balancing authorities. In addition, we include as specified imports an additional 18.9

TWh and 18.0 TWh from asset-controlling supplier (ACS) entities. Notable inconsistencies arise in

reconciliation of CEC and CARB reporting on imports due to different labeling conventions - these

are discussed in detail in the Supplemental Information.

Estimating marginal emissions factors for unspecified electricity transfers

Capacity factor-based emissions factors The EPA’s eGRID includes non-baseload generation

emissions factors for each balancing authority [282]. This analysis uses a capacity factor (ζ) threshold

to establish a non-baseload factor γg, for each generating plant (g ∈ G), excluding those powered

by renewable energy. For plants with utilization less than a cut-in threshold ζ of 20%, the non-

baseload factor is 1. For plants with utilization greater than a cut-out threshold ζ of 80%, the

non-baseload factor is 0. And for plants with utilization lying between the cut-in and cut-out

threshold assumptions the non-baseload factor is found using Eq. (4.16).

γg =
−5

3
ζ +

4

3
(4.16)

This framework is used as a jumping off point for sensitivity testing to the administrative de-

termination for what capacity factor threshold implicates a plant as “marginal.” We generalize the

formulation to test capacity factor cut-in thresholds ranging from 20% to 60% and adjust the linear

transition region according to Eq. (4.17), holding the cut-out threshold static at 80%.

γg =
1

ζ − 0.8
ζ +

1− ζ
ζ − 0.8

(4.17)

California policymakers also currently use a capacity factor-based approach to estimate marginal

emissions impacts for application to unspecified electricity transfers. CARB assigns a default emis-

sions factor (0.428 tonnes CO2/MWh) to all unspecified imports. Using data from 2006-2008,

CARB’s approach identifies marginal generating units on the western grid (WECC) by selecting

those that (1) do not have a combined heat and power component, (2) are powered by fossil fuels,

and (3) have an annual capacity factor of less than 60%. Each identified unit receives an emissions

factor based on its primary fuel type and net generation from EIA Form 923 [129]. As detailed in the

Supplemental Information, CARB’s methodology also includes a number of manual interventions.

We reproduced the calculations to evaluate how different choices for capacity factor thresholds as

well as updated data would affect the adopted emissions factor.

Regression-based emissions factors More rigorous methods are available to characterize the

marginal emissions impact of changes in electricity demand, such as linear regressions on historical

data. Such so-called “difference-in-differences” regressions express the change in CO2 emissions, δEt
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[tonnes CO2/hr], as a function of the change in fossil-fueled generation, δPt [MWh/hr], across a

set of intervals (t ∈ T ). Because emissions are a direct consequence of fossil-fueled generation, the

correlation identified by the regression is assumed to be causal. Further, if fossil-fueled generators are

assumed to be serving marginal demand at all times, the regression coefficient (β) can be interpreted

to represent the marginal emissions factor for meeting incremental demand for electricity in the set

of included data points.

∆Et = β∆Pt (4.18)

We implemented this regression independently for each of the balancing authorities in the WECC,

using hourly historical data from the years 2016-2020 in order to characterize the marginal emissions

associated with incremental fossil generation that may serve unspecified transfers. Because plants

fueled by biomass and plants with combined heat and power components are not expected to respond

to incremental demand on the margin, we excluded plants with these designations according to EIA

Form 860 data [126]. We used hourly data on plant-level emissions Eg,t and power output Pg,t for

each hour of the time horizon (t ∈ T ) and each generator in the balancing authority (g ∈ Gi ⊂ G).

∆Et =
∑
g∈Gi

Eg,t − Eg,t−1 (4.19)

∆Pt =
∑
g∈Gi

Pg,t − Pg,t−1 (4.20)

We used data from the EPA’s Air Markets Program Database for the hourly CO2 emissions and

electricity generation of the fossil-fueled fleet in each balancing authority [131]. In addition, diurnal

and seasonal features in marginal emissions factors are explored by subsetting the full time series

data set and conducting separate regressions for each hour of the day and across each month.

Finally, we conduct a similar suite of regressions across all non-California balancing authorities

in the WECC for the years 2006-2008 and for the years 2016-2018. We compare this result to

the original and updated capacity factor-based estimates, using the currently adopted regulatory

framework. Results and discussion

4.3.3 Results & discussion

Specified import emissions

Using a pure consumption-based accounting approach, we estimate that embodied emissions of ap-

proximately 20.9 MMtCO2 were imported via 79.5 TWh of transfers to the five California balancing
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authorities from out-of-state balancing authorities in 2016. This figure includes, without distinc-

tion or delineation, any emissions associated with (1) specified electricity imports, (2) unspecified

electricity imports, and (3) emissions leakage associated with specified electricity imports. An hour-

by-hour computation estimates gross embodied emissions imports of 20.35 MMtCO2 for 2016. The

observed discrepancy is because evaluation of gross embodied emissions imports on an hour-by-hour

basis will include emissions liabilities computed independently for every hour with positive imports

to a California balancing authority, while an annual computation will only include those emissions

associated with positive net imports to California averaged across an annual basis. The hour-by-hour

calculation offers the best comparator to the gross import emissions assessed by CARB however we

do not expect these estimates to align particularly well as consumption-based accounting does not

explicitly respect any nominal attributes of electricity transfers, quantifying the embodied emissions

imports on a purely physical basis. In other words, to a consumption-based model, all electricity

transfers are unspecified at an average emissions intensity of 0.263 tCO2/MWh for 2016. Figure 4.6

presents the supply of unspecified and specified transfers to California according to their nominal

and physical emissions intensities.

Given the uncertainties regarding data quality for specified import transfers estimated at the

hourly resolution, we proceed with the contract-adjusted consumption-based accounting on a gross

annual basis. However, as exports grow, improved temporal resolution will be necessary to dif-

ferentially assess the emissions implications of instantaneous imports and exports, rather than the

aggregated annual net interchange.

                

                    

            

    

    

    

    

    

    

    

   

    

    

    

    

    

    

   

   

    

    

    

    

    

    

    
 

 

 

Figure 4.6: Left (A/B): Embodied emissions of unspecified transfers to California balancing au-
thorities for 2016 evaluated using consumption-based modeling without (A) and with (B) contract-
adjustments. Right (C): Embodied emissions delivered by neighboring balancing authorities with
contract-adjustments, compared to the source-specific emissions intensity of specified transfers orig-
inating from these BAs in 2016.

With contract-adjusted consumption-based accounting, we find that the 2016 unspecified em-

bodied emissions transfers to California decline to 9.2 MMtCO2, as the volume of transfers to

California balancing authorities is decreased by the amount of mathematically reassigned specified

transfers (see Figure 4.6 (B)). The unspecified transfers have a decreased emissions intensity of
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0.209 tCO2/MWh. This emissions intensity value can be conceptually compared to the currently

adopted default emissions factor for unspecified electricity transfers of 0.428 tCO2e/MWh, as it in-

tends to quantify the emissions associated with unspecified transfers according to an approximation

of physical grid operations. Note that this is not a perfect comparator as the contract-adjusted

consumption-based accounting factor represents an average emissions factor across unspecified elec-

tricity transfers to California, while the currently adopted default emissions factor is intended to

estimate the emissions factor at the margin. In this analysis, contractual flows are only specified for

California load-serving entities. As there is likely to be emissions-free electricity elsewhere in the

West for which the emissions attributes have already been nominally claimed in other jurisdictions,

the estimated emissions factors for the unspecified margin are likely biased downwards. However, as

more contractual electricity flows are specified, a contract-adjusted consumption-based model will

more accurately estimate emissions associated with unspecified electricity transfers across the West.

 

 

  

  

  

  

  

  

  

  

                     
                

               
        

 
 
 
 
 
  
 
  
 
  
 
  
 
 
  
 
 
 
  
 

  
 
  
 

 
 

                 

                   

                 

Figure 4.7: Comparison of consumption-based modeling results to the emissions liabilities assessed
by the current framework employed by CARB for 2016.

The result presented in Figure 4.7 reflects emissions leakage as estimated relative to a purely

physical accounting baseline. As discussed in Section 2.1.2, CARB assumes no emissions leakage

for specified imports writ large, including bilateral contracting. In other words, the implicit coun-

terfactual for specified electricity imports is that if California were not contracting for the energy,

that power plant would not be generating and therefore emissions out-of-state would remain un-

changed. That assumption is probably too strong in many circumstances. In contrast, the implicit

counterfactual for a consumption-based accounting approach is that absent off-take agreements by

California LSEs, the out-of-state resource would otherwise displace other emitting and non-emitting

generators in its resident balancing authority or elsewhere in the WECC. Although CARB does not
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currently assert this as the counterfactual scenario for specified imports, it does make that assertion

when addressing transactions that clear the CAISO EIM. The CAISO EIM designates individual

resources as being dispatched to serve California load, whereas CARB considers all transfers from

the EIM as unspecified and applies a true-up emissions liability based on its default emissions fac-

tor [281]. The true-up resulted in an additional 0.58 MMtCO2e of liabilities in 2016 [284]. In the

context of any potential leakage-related reforms to the cap-and-trade program, we are mindful that

there are complex institutional and legal considerations that will inform any future policy deliber-

ations. While consumption-based accounting is not the only technique for quantifying emissions,

these results illustrate that the emissions leakage assessed across all specified imports (as presented

in Figure 4.7) could be more than an order of magnitude larger than what CARB currently assesses

in relation to EIM transfers.

While we do not explicitly analyze the economic incentives introduced by applying consumption-

based modeling to emissions leakage quantification, any resource shuffling that swaps emissions-

intensive purchases for non-emitting purchases would have the effect of increasing the emissions

leakage factor assessed for the origin balancing authority. This feedback may reduce the potential

emissions liabilities that can be avoided through resource shuffling. However, this approach may also

disincentivize specified purchase of clean energy from carbon-intensive regions of the grid, as these

purchases would be assessed large emissions leakage liabilities – such contractual arrangements may

be important to catalyzing development of new clean energy resources.

As market operators may contemplate similar approaches, involving unique emissions leakage

factors for each balancing authority applied to larger volumes of specified imports [251], future

analysis should characterize the implications of such frameworks for market incentives.

Similar methods could be applied to account more explicitly for the emissions implications of

electricity exports from balancing authorities in California to the rest of the western grid. With

consumption-based modeling at hourly or sub-hourly time steps, the periods with exports across a

given interchange can be characterized separately from those periods when imports are occurring

across the interchange. However, this would require hourly or sub-hourly information about the

dynamic transfer of specified electricity imports which is not publicly available at this time.

Marginal emissions factors for unspecified electricity

We estimate the hourly change in CO2 emissions in neighboring balancing authorities as a linear

function of the hourly change in generation of fossil-fueled plants that provide electricity to that

balancing authority across the years 2016-2018 for comparison to the capacity factor-based method-

ology employed by the EPA. Figure 4.8 compares the range of factors obtained through sensitivity

testing of eGRID non-baseload emissions factors to a regression-based alternative for a selection

of balancing authorities in the WECC. We find no salient relationship between marginal emissions

factors as estimated by a capacity factor threshold relative to a regression approach.
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Figure 4.8: Marginal emission factors (MEFs) as estimated by capacity factor-based methods used
in eGRID are compared to regression-based estimates that isolate diurnal and seasonal features in
a selection of balancing authorities across the West. eGRID values are presented with a shaded
sensitivity range in the cut-in capacity factor threshold from 20% to 60%. Regression coefficient
values are presented with an associated 95% confidence interval.
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Seasonal and diurnal patterns that emerge in regression analysis are expected to grow more pro-

nounced as variable renewable energy resources comprise a larger fraction of total generation, driving

features in net load magnitude served by dispatchable generators and energy storage resources.

We also replicate the original CARB method described in Section 4.3.2 to produce a nearly identi-

cal emissions factor (0.434 tCO2e/MWh, which is slightly higher than the official 0.428 tCO2e/MWh).

The slight discrepancy is due to minor methodological differences, including the exclusion of Cana-

dian plants as documented in Appendix C.

Employing the same method for more recent data from 2016-2018, we obtain an emissions factor

of 0.635 tCO2e/MWh, with the increase due to declining capacity factors for coal plants across the

WECC. Because the original CARB method uses a capacity factor threshold of 60% to identify

marginal units, low-capacity coal plants now identify as marginal resources and therefore increase

the calculated emissions factor. Across the years 2006-2008, less than 1% of generation from the

classified marginal generators was coal-fired—but that total exceeds 35% for the years 2016-2018

(see Figure C.5 in Appendix C). We similarly illustrate the sensitivity of CARB’s legacy method to

the selection of capacity factor threshold in the Supplemental Information (see Figure C.6).

The results for a regression on emissions and generation across all non-California balancing

authorities in the western grid (meant to approximate the constraints employed in CARB’s current

capacity factor-based analysis) are displayed in Figure 4.9. Through either a capacity factor-based

exercise or a regression-based analysis, we find that the estimated marginal emissions factor for

fossil-fueled generation across the WECC has increased by approximately 20% over the past decade.

The regression-based marginal emissions factor estimate for an updated time horizon is nearly 40%

greater than the current adopted default emissions factor.

As recently as the 2018 MRR Final Statement of Reasons (FSOR), CARB staff indicated that

they believe the default unspecified emissions factor is still an appropriate approximation for the

emissions rate associated with power plants operating on the margin of western electricity markets

[263]. Our results suggest that may not be the case and that additional analysis may be warranted.

Any change to the default emissions factor would need to address a number of additional chal-

lenges. For example, unspecified imports might not always operate solely on the economic margin,

such that an analysis of marginal dispatch might not be useful for identifying the emissions profile of

unspecified resources – in such cases the unspecified emissions factor as estimated through contract-

adjusted consumption-based accounting may be more accurate. Marginal dispatch is also served

by a wide range of resources in the west, including dispatchable hydroelectric generation that are

omitted from this analysis due to data limitations. Finally, as California’s Independent Emissions

Market Advisory Committee has observed, the choice of default factors is not just a question of

accuracy, but also incentives: a relatively high default factor provides an incentive for low-emissions

resources to transact business such that they are identified as specified resources, whereas a low

emissions factor provides an incentive for high-emission resources to transact through channels that
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Figure 4.9: Replication of the CARB-adopted capacity factor-based marginal emissions factor for
the time horizon 2006-2008 (left) is compared against regression-based estimates (across all non-
California balancing authorities in the WECC) across the same time horizon and for an updated
data set for 2016-2018 (right).

are designated as unspecified [240]. However, a high default factor may also offer incentive to en-

gage in resource shuffling as highlighted by Bushnell et al. [279]. Although the analysis presented

here does not explicitly address these potential challenges, we believe it illustrates the feasibility of

improving the methods by which default emissions factors are assessed for electricity imports.

4.3.4 Conclusions

Regulating electricity imports is a critical area for energy policymakers in any dynamic, multi-

jurisdictional electricity system and an increasingly complicated problem in California, which fea-

tures ambitious climate policy, cross-border bilateral electricity transactions, and regional organized

electricity markets. With the goal of supporting the effective and efficient implementation of climate

and clean energy policy in the western United States, this paper proposes a novel, harmonized quan-

titative framework for estimating the emissions impacts of regional electricity transfers, respective

of both the physical and contractual aspects of electricity supply and delivery. This work also elu-

cidates several instances where substantive methodological improvements may be needed to achieve

a consistent framework for regulating California’s role in a rapidly evolving western electricity grid.

First, interagency coordination efforts should ensure consistent labeling of electricity imports, as

inconsistency in data reporting can lead to confusion across overlapping agency missions and policy

applications. Second, a consistent treatment for emissions leakage quantification should be employed

across all specified imports; the approaches in use today are arguably inconsistent in their application
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and means of mitigating leakage, specifically for specified imports that are cleared for nominal

transfer in a day-ahead or bilateral context. However, further analysis is necessary to quantitatively

characterize the consequent behavior incentives this accounting regime creates for regulated entities.

Third, we find the default emissions factor for unspecified electricity imports does not reflect current

conditions on the western grid and should be updated with a more accurate method and/or to better

align economic incentives for identification of imports. With the potential introduction of a day-

ahead wholesale electricity market in the western United States, policymakers have an opportunity

to update and harmonize the accounting structures used to measure GHG emissions associated with

electricity imports to California and serve as a positive example to regulators in other jurisdictions.
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Concluding remarks

5.1 Key findings

The principal contribution of this body of work is to provide a multi-model analysis of the challenges

and opportunities for transitioning integrated natural gas and electricity energy systems to cost-

effective net-zero emissions energy systems.

In Chapter 2, we find that electrification of greater than 80% of core gas demands is a component

of the least-cost solution for modeled energy systems. Despite this substitution, the gas system is

maintained to provide energy to difficult-to-electrify customers and to deliver net-zero emissions gas

to electricity generators for use in times of peak electricity demand. Restricting electrification of gas

appliances increases reliance on advanced gas technologies, such as power-to-gas transformation, and

increases annual system costs by 15% in 2040. Neglecting practical constraints on pipeline blending

of hydrogen can produce a misleading result that only transitions 20% of gas demands to electric

appliance substitutes, relying on hydrogen blend fractions of greater than 50%. In all cases, we find

average costs of delivered gas increase nearly 5-fold across the decarbonization transition in the test

system, highlighting the importance of future work to address cost-allocation strategies for ensuring

an equitable, affordable energy transition.

In Chapter 3, we find that the proposed methane pyrolysis energy system may be one option

for reducing greenhouse gas emissions in the near term while continuing to leverage existing infras-

tructure and minimizing stranded assets. The estimated emissions abatement costs of the pyrolysis

energy system for small scale heating applications are similar to existing options for large-scale

gaseous carbon capture and sequestration. In the case studies explored, results for the California

transportation sector and California refinery hydrogen, where substantial credits are available for

avoiding greenhouse gas emissions, indicate levelized cost of hydrogen could be as low as $0.39/kg

H2 without carbon co-product value. However, even modest amounts of catalyst losses can make

151
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the process uneconomic. While unique engineering and design challenges remain and the technol-

ogy is currently only developed at the lab scale, a molten media-based methane pyrolysis process

may offer advantages with respect to carbon supply chain and utilization of preferential economic

characteristics and sensitivities.

In Chapter 4, we draw several meaningful conclusions in a two-part analysis of greenhouse gas

accounting quantitative frameworks and adopted regulations.

In Section 4.2, we show that in updating its Power Source Disclosure program, the California En-

ergy Commission has taken meaningful steps to improve the reporting structures for GHG emissions

intensity associated with retail electricity service to California customers. By assigning imported

specified purchases of electricity the emissions associated with delivered power, the California En-

ergy Commission (CEC) aims to balance recognition of the physical and contractual elements of

electricity system operation. We find that the Power Source Disclosure (PSD) program’s methods

are likely to produce a clear and reasonable basis for evaluating the emissions associated with phys-

ical deliveries of retail power over the long run. In the near term, however, two effects — both

of which are likely transient — could lead to artificially low reported GHG emissions intensities

for some load serving entities (LSEs). First, the PSD program rules reward LSEs that are over-

procured by preferentially deducting the GHG emissions associated with emitting resources. This

allows over-procured LSEs to claim a higher share of zero-carbon resources than is present in their

total procurement profile. Until the process of re-allocating retail electricity load and long-term

supply contracts among LSEs is complete, the CEC-adopted methodology could allow several LSEs

to report artificially low emissions intensity estimates. Second, a decision to grandfather legacy

firmed and shaped contracts under a preferential emissions accounting method will tend to produce

artificially low GHG emissions estimates for LSEs that, like many community choice aggregators,

have relied heavily on contracts that include renewable energy certificates but physically deliver

other resources to retail customers. As these contracts reach maturity, however, the reported GHG

emissions of their replacements will be increasingly based instead on the power that they physically

deliver.

Further, we identify three key conclusions on accounting for GHG emissions associated with

dynamic electricity transfers in Section 4.3. First, interagency coordination efforts should ensure

consistent labeling of electricity imports, as inconsistency in data reporting can lead to confusion

across overlapping agency missions and policy applications. Second, a consistent treatment for emis-

sions leakage quantification should be employed across all specified imports; the approaches in use

today are arguably inconsistent in their application and means of mitigating leakage, specifically for

specified imports that are cleared for nominal transfer in a day-ahead or bilateral context. However,

further analysis is necessary to quantitatively characterize the consequent behavior incentives this

accounting regime creates for regulated entities. Third, we find the default emissions factor for

unspecified electricity imports does not reflect current conditions on the western grid and should
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be updated with a more accurate method and/or to better align economic incentives for identifica-

tion of imports. With the potential introduction of a day-ahead wholesale electricity market in the

western United States, policymakers have an opportunity to update and harmonize the accounting

structures used to measure GHG emissions associated with electricity imports to California and

serve as a positive example to regulators in other jurisdictions.

5.2 Policy implications

The conclusions outlined in this dissertation have meaningful implications for regulatory policy

across the transition to net-zero emissions gas-electric energy systems.

First, results in Chapter 2 indicate that continued expansion of natural gas distribution systems

may not be a prudent investment given the magnitude of existing natural gas end-uses that cur-

rently outstrips supply of cost-effective net-zero emissions gas. Modeling results indicate that entire

climate-zones may be most cost-effectively decarbonized by electrifying the vast majority of gaseous

energy end-uses, particularly when supply constraints exist on non-electrolytic sources of net-zero

emissions gas (e.g., biomethane). Barring expansive use of negative emissions technologies for car-

bon removal, the cost-effective fate of the natural gas distribution sector may be limited to serving

peak-coincident, back-up, or otherwise case-specific transmission- or distribution-constrained energy

demands.

Further, while redundant and hybrid energy infrastructure systems can provide immense value,

policy-makers should consider all available alternatives including on-site storage of electrical or

chemical energy. Pipeline networks are famously cost-effective for distributing large volumes of

energy. However, as energy deliveries decline to quantities reflective of back-up energy needs during

times of power-system stress or solely serving hyper-localized demands where electricity transmission

constraints exist, the levelized economics of energy may favor options with lower fixed system costs

such as distributed on-site liquified petroleum gas (LPG) back-up heat sources.

In Chapter 3, we show that in design of novel and breakthrough technologies for carbon-capture,

the presence of policy support is critical to achieving cost-competitive economics with un-mitigated

release of GHG emissions. Programs like the 45Q tax credits for carbon capture and sequestration or

the Low Carbon Fuels Standard should be broadly designed to accommodate a range of technologies

that may not fit the prescriptive definition of gaseous carbon dioxide capture and sequestration in

geologic formations. The potential for solid carbon generation for permanent sequestration or as a

manufacturing feed-stock should be recognized as a pathway for net emissions reductions.

Finally, as illustrated in Chapter 4, national and sub-national climate policy design must reckon

with the dual contractual and physical nature of energy supply portfolios in assessing the emissions

liabilities of regulated energy providers. Improved data transparency regarding specified energy

purchases and dynamic transfer of energy across jurisdictions will allow for better greenhouse gas
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accounting models to ensure that zero means zero. Similar frameworks must be applied to the natural

gas sector such that regulated entities may experience economic incentive to purchase responsibly-

sourced natural gas, biomethane, or hydrogen at a premium to more emissions-intensive sources of

gas.

5.3 Future work

Critical questions remain regarding the cost-effective and equitable transition to net-zero emissions,

integrated gas-electric energy systems. We have identified the following opportunities for future

research:

• Electric sector impacts of appliance electrification. Future work should endeavor to improve

the representation of gas and electric appliance demand profiles. Care should be taken to

model realistic energy systems with correlated profiles for baseline energy demands, modeled

appliance-level energy demands, and renewable energy availability. Tools such as NREL’s Res-

Stock and ComStock may be useful to simulate a set of representative appliances, as opposed

to a generic template appliance for each region. However, novel approaches may be required

to model hybrid energy solutions which use combustion back-up, relying on either distributed

storage of liquefied petroleum gases or continued maintenance of the gas distribution system.

• Role of hydrogen in cost-effective emissions-constrained energy systems. The presented model-

ing framework can be used to characterize the degree to which direct consumption of hydrogen

at diffuse end-use customers is a feasible strategy for decarbonizing gas distribution. Consump-

tion of large shares of hydrogen in diffuse gas distribution end uses will require infrastructure

upgrades from the pipeline to the burner tip and will be blend-limited by the least-permissive

device in the supply chain. By comparing the savings of an unconstrained hydrogen blend-

ing scenario to the estimated fixed costs of necessary infrastructure upgrades, we can identify

whether such investments are in the public interest.

• Redundant infrastructures for resilient energy systems. There is high value to having redun-

dant and hybrid energy infrastructures. However, future work should aim to characterize the

desirable attributes of a back-up/peaking energy infrastructure to serve low volumes of energy

demand [MWh] during typical conditions, but to provide substantial energy delivery capacity

[MW] during extreme conditions. Emphasis should be placed on systems that have low fixed

costs of investment and maintenance and that have a high degree of reliability when called

upon. Distributed liquified petroleum gas (LPG) for use in hybrid gas-electric heat pumps or

on-site back-up generators could serve this role.

• Cost allocation and rate-making to ensure equity across the transition. As shown in Chapter 2,

we find average costs of gas deliveries increase by as much as ten-fold across the transition to
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a net-zero emissions gas-electric energy system. The equitable allocation of these costs across

past and present customers is an essential area of study to ensure a just transition.

• Co-optimization of electro-fuels production. In practice, the design and operations of electro-

fuels production facilities will be optimized to increase the operational hours for capital-

intensive equipment and maximize profits. Similar technology-specific optimization routines

as employed in Chapter 3 for molten-media methane pyrolysis may be necessary to accurately

account for production costs of other low-carbon fuels.

• Greenhouse gas accounting for integrated gas-electric energy systems. The consumption-based

accounting models proposed in Chapter 4 can be applied in future study to integrated gas-

electric energy systems. This model will jointly solve for the embodied emissions of delivered

gas and electricity for a system where gas is used to generate electric power and electric power

is used to produce gaseous fuels. The contract-adjusted technique allows for regulated entities

to take nominal credit for the emissions characteristics of contractual purchases and will help

align incentives for purchasing responsibly-produced or net-zero emissions gas.

• Experimental study in energy systems transition. Energy system transitions do not occur in the

sterile environment created by our mathematical models. Significant further study is required

on the practical economic and policy tools to drive adoption of the enabling technologies for a

cost-effective transition. For example, are incentive dollars for scaling new electric heat pump

markets most effective when targeted at the customer, the contractor, or the manufacturer?

An entire ecosystem of actors will determine the evolution of the energy system, and the

effectiveness of various economic instruments is understudied and highly valuable for shaping

policy. These questions can not be answered by more models. Rather, we need pilot programs

designed rigorously to elucidate new information about the most effective ways to reduce

emissions and move the needle towards a sustainable energy system.
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Appendix A

Supplemental information:

Gas-electric planning

A.1 Nomenclature

Sets and Indices:

n, e ∈ NP , EP Nodes and edges in electrical grid

n, e ∈ NG, EG Nodes and edges in gas pipeline network

x ∈ X All existing and candidate energy supply and demand units

x ∈ Xn ⊂ X All existing and candidate units at node n

ω ∈ Ω ⊂ X Electricity generation units

ω ∈ ΩG ⊂ Ω Gas-fired generation units

s ∈ SP ,SG ⊂ S ⊂ X Electrical and gaseous storage units

z ∈ Z ⊂ X Zero-carbon gas production units

z ∈ Zb ⊂ Z Biomethane gas production facilities

a ∈ A ⊂ X Core (residential and commercial) gas customer appliances

u ∈ U Energy end-uses modeled at appliance-level

a ∈ Au ⊂ A Appliances that satisfy energy end-use u

g ∈ G Set of gas components tracked (e.g., H2, CH4, CO2)

i ∈ I Investment time horizons

r ∈ R Representative operational periods

o ∈ O Linked operational time steps for each operational period

c ∈ C Sequential operational periods over an investment time horizon

sampled from the representative set

(i, r, o) ∈ T Multi-index for time, where T ≡ I ×R×O
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Parameters:

Network Configuration:

AP ∈ RNP×EP Nodal-edge incidence matrix for the electrical power grid

AG ∈ RNG×EG Nodal-edge incidence matrix for the gas pipeline network

Operational Parameters:

Φ̂P(i,r,o),n Baseline demand for electrical energy [MW] at power node n ∈ NP
Φ̂G(i,r,o),n Baseline demand for gaseous energy [MW] at gas node n ∈ NG
ϕP(r,o),a, ϕG(r,o),a Electrical and gaseous energy demand profiles for modeled appliances

[MW/appliance] a ∈ A
Γω,Γω Minimum and maximum stable electrical load [p.u] for dispatchable resource

ω ∈ Ω

γ
(r,o),ω

, γ(r,o),ω Minimum and maximum availability [p.u] for non-dispatchable resource ω ∈ Ω

ρω Maximum hourly ramp rate [p.u/hour]

υω, υω Maximum down-time and up-time [hours]

P e Maximum power flow [MW] for transmission line e ∈ EP
Xe Reactance [p.u.] for transmission line e ∈ EP
Qe Maximum gas flow [standard m3/hour] on gas pipeline e ∈ EG
Πn,Πn Minimum and maximum pressure (squared) [Pa2] at gas node n ∈ NG
αe Maximum squared compression ratio for compressor at start of gas pipeline

e ∈ EG
Sn Maximum rate of supply [MW] of fossil natural gas at each node n ∈ NG
Ke Resistance factor for gas pipeline e ∈ EG
βω Emissions factor for generation resource [tCO2/MMBtu fuel]

βG Emissions factor for natural gas [tCO2/MWh fuel]

χn,g Mole fraction of each gas component g produced by nodal fossil gas supply at

node n [moles of g/moles of gas]

χs,g Mole fraction of each gas component g produced by gas storage unit s [moles

of g/moles of gas]

χz,g Mole fraction of each gas component g produced by net-zero emissions gas

production unit z [moles of g/moles of gas]

χg Maximum molar blend of gas component g ∈ G [moles of g/moles of gas]

Mg Molar mass of gas component g ∈ G [kg/kmol]

xg Energy content (on a LHV basis) of gas component g ∈ G [MJ/kg]

CV OMi,x Variable operations and maintenance cost [$/MWh] of resource x ∈ X
Cfueli,ω Fuel cost [$/MMBtu] of generation resource ω ∈ Ω

CGi Cost of natural gas [$/MWh] in an investment period i ∈ I
w(i,r) Representative weights for representative time period simulated [hours/year]
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Design Parameters:

m̂x Number of existing units [no.] in resource x ∈ X
ux Unit size [MW] for resource x ∈ X
δx Maximum units expanded per investment period [no./year] for resource x ∈ X
∆x Maximum units expanded across entire modeled investment horizon [no.] for

resource x ∈ X
τx Average lifetime [years] for resource x ∈ X
gu Forecast growth rate [%/year] for appliance sales by end-use u ∈ U
ĝa Historical growth rate for sales of appliance a ∈ A
fi,a,j Cumulative failure fraction [%] between investment periods i, j ∈ I for popu-

lation of appliances a ∈ A
m̂a Base year population [count] of appliance type a ∈ A
M̂a Base year sales [count] of appliance type a ∈ A (i.e., equipment entering service)

ηω Heat rate [MMBtu/MWh] for every generation resource ω ∈ Ω

ηz Conversion efficiency [MWh gas/MWh elec.] for zero-emissions gas resource

z ∈ Z
η+
s Storage charge efficiency [%] of storage s ∈ S
η−s Storage discharge efficiency [%] of storage s ∈ S
ηls Storage hourly loss percentage [%] of storage s ∈ S
ds Storage duration [hours] for storage s ∈ S
hz Hydrogen fraction (by energy) [MWh H2/MWh gas] of produced net-zero emis-

sions gas by resource z ∈ Z
β
G

i , β
P

i Maximum emissions intensity of energy delivered [tCO2/MWh] in gas and elec-

tricity sectors in an investment period i ∈ I
B Maximum biomethane availability [MWh/year]

Yi Calendar year associated with investment period i ∈ I
Ŷ Calendar year associated with initial appliance population assumptions

κx Capital recovery factor [year−1] for resource x ∈ X
ιWACC Weighted average cost of capital [%]

ιsoc. Societal cost discount rate [%]

Ccapi,x Capital cost [$/MW] of resource x ∈ X in an investment period i ∈ I
CFOMi,x Fixed operations and maintenance cost [$/MW-yr] of resource x ∈ X in an

investment period i ∈ I
Cpeak Cost of peak electricity distribution infrastructure [$/kWpeak/year]

Cdistn Cost of gas distribution network maintenance and reinvestment [$/node/year]

at gas system node n ∈ NG
ϑi Present value discounting factor [$2018/$Yi

] for investment time period i ∈ I
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Variables:

δi,x Number of units built [no.] of a resource x ∈ X in investment period i ∈ I
ζi,x Number of units retired [no.] of resource x ∈ X in investment period i ∈ I
mx,i Remaining number of installed units [no.] of type x ∈ X and vintage v ∈ V
ΦG(i,r,o),n Gas demand [MW] at gas node n ∈ NG in time step (i, r, o) ∈ T
ΦP(i,r,o),n Electricity demand [MW] at power node n ∈ NP in time step (i, r, o) ∈ T
ΦZ(i,r,o),z Electricity demand [MW] for production of net-zero emissions gas at production

unit z ∈ Z in time step (i, r, o) ∈ T
Φ
P

(i,r,o),n Peak electricity demand [MW] at power node n ∈ NP in time step (i, r, o) ∈ T
ΓP(i,r,o),ω Electricity generation dispatch [MW] for resource ω ∈ Ω in time step (i, r, o) ∈

T
ΓZ(i,r,o),z Net-zero gaseous fuel dispatch [MW] for resource z ∈ Z in time step (i, r, o) ∈ T
ν(i,r,o),ω Units [no.] of resource ω ∈ Ω committed in time step (i, r, o) ∈ T
ν+

(i,r,o),ω Units [no.] of resource ω ∈ Ω started up in time step (i, r, o) ∈ T
ν−(i,r,o),ω Units [no.] of resource ω ∈ Ω shut down in time step (i, r, o) ∈ T
P(i,r,o),e Power flow [MW] across transmission line e ∈ EP in time step (i, r, o) ∈ T
v(i,r,o),e Voltage angle [radians] across transmission line e ∈ EP in time step (i, r, o) ∈ T
Q(i,r),e Gas flow rate [standard m3/hour] in pipeline e ∈ EG in rep. time period (i, r)

q(i,r),e,g Nominal flow rate [kmol/sec] of gas component g ∈ G across pipeline e ∈ EG in

rep. time period (i, r)

φ(i,r,o),n,g Nominal gas delivery rate [kmol/sec] of gas component g ∈ G at node n ∈ NG
in time step (i, r, o)

Π(i,r),n Nodal squared pressure [Pa2] at gas node n ∈ NG in rep. time period (i, r)

Π̂(i,r),e Squared pressure [Pa2] at start end of each pipeline e ∈ EG after compression

in rep. time period (i, r)

ΓG(i,r),n Local slack supplies [MW] of natural gas at gas node n ∈ NG in rep. time

period (i, r)

y(i,r),e Flow direction [bin.] on pipeline e ∈ EG in rep. time period (i, r)

λ(i,r),e McCormick relaxation pressure drop [Pa2] across pipeline e ∈ EG in rep. time

period (i, r)

Ψ(i,r,o),s State of charge [MWh] of storage s ∈ S in time step (i, r, o) ∈ T
Ψ(i,r),s, Ψ(i,r),s Maximum/minimum nominal state of charge [MWh] of storage s ∈ S in rep.

time period (i, r)

ψ+
(i,r,o),s, ψ

−
(i,r,o),s Charge/discharge rate [MW] of storage s ∈ S in time step (i, r, o) ∈ T

Υc,s State of charge [MWh] in sequential period c ∈ C of storage s ∈ S
ξGi , ξPi Zero-carbon gas allocation [MWh/year] in the gas and electric sector in invest-

ment period i ∈ I
εGi , εPi Negative emissions offset use [tCO2/year] in the gas and electric sector in in-

vestment period i ∈ I
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A.2 Cost assumptions

Specific information on the capital and operating cost assumptions used for the indicative case study

are included below.

Capital Cost [2018$/kW]
Resource 2020 2025 2030 2035 2040
Natural gas CT 934 887 862 844 830
Natural gas CC 1034 967 944 925 910
Coal 3593 3559 3516 3461 3398
Nuclear 6062 5906 5734 5545 5341
Solar PV 1325 1072 819 782 746
Wind 1786 1615 1412 1357 1300
Natural gas CC+CCS 2588 2346 2254 2156 2073
Biomethane 0 0 0 0 0
Electrolytic hydrogen 950 760 570 548 527
Electro-methane 950 760 570 548 527
Lithium ion battery 1455 1004 817 766 715
Long-duration storage 2225 1980 1765 1725 1690

Table A.1: Assumed capital costs for generation, power-to-gas, and storage units [2018$] for the
planning time horizon

Fixed Operating Cost [2018$/kW-yr]
Resource 2020 2025 2030 2035 2040
Natural gas CT 11 11 11 11 11
Natural gas CC 13 13 13 13 13
Coal 40 40 40 40 40
Nuclear 119 119 119 119 119
Solar PV 16 13 10 9 9
Wind 42 41 39 37 35
Natural gas CC+CCS 27 27 27 27 27
Biomethane 448 448 448 448 448
Electrolytic hydrogen 71.20 57.00 42.75 41.15 39.56
Electro-methane 71.20 57.00 42.75 41.15 39.56
Lithium ion battery 36.37 25.10 20.43 19.15 17.88
Long-duration storage 84.05 69.83 55.61 54.02 52.43

Table A.2: Assumed fixed operating costs for generation, power-to-gas, and storage units [2018$]
for the planning time horizon

A.3 Transmission expansion optimization

In the presented model formulation, the network topology of the electric power and natural gas

systems is fixed and immutable. New investment in transmission resources may be contemplated to
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Variable Operating Cost [2018$/MWh]
Resource 2020 2025 2030 2035 2040
Natural gas CT 2 2 2 2 2
Natural gas CC 4 4 4 4 4
Coal 4 4 4 4 4
Nuclear 2 2 2 2 2
Solar PV 0 0 0 0 0
Wind 0 0 0 0 0
Natural gas CC+CCS 6 6 6 6 6
Biomethane 0 0 0 0 0
Electrolytic hydrogen 0 0 0 0 0
Electro-methane 126.90 102.53 78.19 57.36 36.54
Lithium ion battery 0 0 0 0 0
Long-duration storage 0 0 0 0 0

Table A.3: Assumed variable operating costs for generation, power-to-gas, and storage units [2018$]
for the planning time horizon

Installed Cost [2018$/unit]
Residential appliances Year

2020 2025 2030 2035 2040
Gas furnace [4 ton] 1980 1980 1980 1980 1980
Gas water heater [50 gal.] 737 737 737 737 737
Gas stove [4 9,500 BTU-
burner]

2000 2000 2000 2000 2000

Electric heat pump [4 ton] 6922 6638 6355 6071 5788
Heat pump water heater
[50 gal.]

1733 1662 1418 1347 1155

Electric induction stove [4
5kW-burner]

2000 2000 2000 2000 2000

Commercial appliances Year
2020 2025 2030 2035 2040

Gas furnace [10 ton] 5230 5230 5230 5230 5230
Gas water heater [199
kBTU/hour]

6000 6000 6000 6000 6000

Gas stove [24 9,500 BTU-
burner]

12000 12000 12000 12000 12000

Electric heat pump [10
ton]

10710 9954 9198 8694 8190

Heat pump water heater
[74 kBTU/hour]

23652 21368 19192 17871 16550

Electric induction stove
[24 5kW-burner]

12000 12000 12000 12000 12000

Table A.4: Assumed installed cost of gas and electric appliances [2018$/unit]
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Fuel 2020 2025 2030 2035 2040
Natural gas 2.60 3.25 3.57 3.67 3.74
Coal 2 2 2 2 2
Nuclear 0.67 0.67 0.68 0.69 0.70

Table A.5: Assumed fuel costs [2018$/MMBtu] for electricity generation and commodity natural
gas from [127]

accommodate the shift towards net-zero emissions energy systems. Similarly, the premature decom-

missioning and retirement of existing transmission interconnections may occur if contracted bulk gas

deliveries decline to uneconomic quantities. Here, we present a preliminary model formulation that

will accommodate transmission expansion and retirement planning in the presented optimization

framework for integrated gas-electric energy systems.

First, expansion and retirement decision variables are introduced for each candidate and existing

transmission edge. The total number of active transmission assets in each investment period is

computed by summing the number of existing units, plus any new investments, less any retirements.

Here, we enforce a maximum number of transmission assets of 1 (i.e., each edge must represent a

single physical power line or transmission pipeline). This will accommodate multiple connections

between the same two nodes, but will model each separately according to the physical flow equations

rather than lumping their transmission capabilities into a single modeled asset.

δi,e ≥ 0, ζi,e ≥ 0, mi,e ≥ 0 ∀i ∈ I, e ∈ EG ∪ EP (A.1a)∑
i∈I

δi,e ≤ 1, ∀e ∈∈ EG ∪ EP (A.1b)

ζi,e ≤ m̂e +
∑

j∈[i−1]

(δj,e − ζj,e) ∀i ∈ I, e ∈ EG ∪ EP (A.1c)

mi,e = m̂e +
∑
j∈[i]

(δj,e − ζj,e) ∀i ∈ I, e ∈ EG ∪ EP (A.1d)

mi,e ≤ 1, ∀e ∈∈ EG ∪ EP . (A.1e)

Second, the constraints governing transmission of electricity and natural gas are modified to

account for the endogenous decision dictating whether an active transmission asset is in operation.

For electric transmission, the box constraints delimiting power flow across an edge must now

include the variable mi,e indicating whether a transmission line is in operation during this investment

period. If mi,e = 0 then the flow across the pipeline must be 0.

− P emi,e ≤ P(i,r,o),e ≤ P emi,e ∀(i, r, o) ∈ T , ∀e ∈ EP (A.2)

In addition, the equality constraint specifying power flows (Eq. (2.18)) must be replaced by a
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set of inequality constraints.

P(i,r,o),e ≥ (mi,e − 1)P e + P̂

(
−1

Xe

) ∑
n∈NP

An,ev(i,r,o),n, ∀(i, r, o) ∈ T , ∀e ∈ EP (A.3a)

P(i,r,o),e ≤ (1−mi,e)P e + P̂

(
−1

Xe

) ∑
n∈NP

An,ev(i,r,o),n, ∀(i, r, o) ∈ T , ∀e ∈ EP . (A.3b)

When mi,e = 1, these constraints will tightly bind P(i,r,o),e with equality. However, when mi,e = 0

these constraints will permit the value of P(i,r,o),e to fall to zero in accordance with the box constraints

in Eq. (A.2).

For gas transmission, the box constraint delimiting gas flow across an edge must now include

the variable mi,e indicating whether a transmission pipeline is in operation during this investment

period. If mi,e = 0 then the flow across the pipeline must be 0.

−Qemi,e ≤ Q(i,r),e ≤ Qemi,e ∀(i, r) ∈ (I ×R) , ∀e ∈ EG. (A.4)

As the gas flow equation constraints are already relaxed to inequalities in Eq. (2.39), no analogous

inequalities (as employed in Eq. (A.3)) are required for the gas transmission expansion problem.

Third, the capital and operating costs associated with specific transmission assets are included

in the objective function terms:

Cexpi =
∑
j∈[i]

∑
x∈X∪EP∪EG

(
κxC

cap
j,x δj,x{1|Yi ≤ Yj + τx}+ CFOMi,x mi,x

)
∀i ∈ I. (A.5)

Including transmission expansion optimization with realistic binary variables for expansion and

retirement will necessarily increase computational complexity of the optimization program. How-

ever, continuous relaxations for investment decision variables could be used to identify high-value

transmission pathways that may be candidates for expansion.

A.4 Gas quality tracking

In the presented model formulation, the gas quality tracking problem (also known as a pooling prob-

lem) has been reduced to a simple set of linear constraints for nominal tracking of hydrogen injections

and consumption. This approach is sufficient for preliminary investigations, however this results in

several shortcomings discussed in Section 2.7. Specifically, the implications of hydrogen blending

for operation and capture efficiency of CCS-equipped gas-fired generation units cannot be endoge-

nously assessed. In addition, as lower-energy content sources of biomethane are incorporated into

the pipeline network, pipeline operators may seek strategies for dynamic gas quality control through
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blending of liquified petroleum gases to modulate combustion interchangeability characteristics.

The well-mixed gas quality tracking problem presents a nonlinear, non-convex modeling challenge

that remains an area of active research. For a more thorough review of previous work on this problem

see [286]. Versions of the below have been proposed in previous works including [287, 288] and [289].

Here, we present a preliminary formulation for one approach to linearize the full nonlinear, well-

mixed gas quality tracking problem. We do so by using a discrete set of parameters that span the

range of potential heating values delivered, paired with a set of binary decision variables to indicate

precisely which of these heating values is delivered at each node in each operational time step. In

this manner, we constrain the average molar energy content of gas entering the node to equal the

average molar energy content of gas leaving the node. These energy content variables can also be

constrained to reflect interchangeability limits of end-use consumption equipment.

First, we introduce a decision variable for the heating value of gas delivered in each time-point

at each node, h(i,r),n [MJ/Sm3]. This value will be found using the summation across a set of binary

indicator variables qn,k that span the discretized range of acceptable heating values, characterized

by their counterparts βhk .

h ≤ h(i,r),n ≤ h ∀(i, r) ∈ (I ×R) , ∀n ∈ NG (A.6a)

h(i,r),n =
∑
k∈K

βhk q(i,r),n,k ∀(i, r) ∈ (I ×R) , ∀n ∈ NG (A.6b)

The mathematical approach here requires first partitioning the gas flow variable into a positive

and negative value. These variables will explicitly identify where the flow direction comports with

or confounds the nominal direction specified in the directional nodal-edge incidence matrix B (see

Eq. (2.2)).

Q+
(i,r),e ≥ 0, Q−(i,r),e ≥ 0 ∀(i, r) ∈ (I ×R) , ∀e ∈ EG (A.7a)

Q(i,r),e = Q+
(i,r),e −Q

−
(i,r),e ∀(i, r) ∈ (I ×R) , ∀e ∈ EG (A.7b)

Using these variables, we identify all molar gas flows entering each node M(i,r),n, regardless of

their emergent flow direction (i.e., the sign of Q(i,r),e) or nominal flow direction (i.e., the sign of

AGn,e):

M(i,r),n =
ΓG(i,r),n

LHVNG
+
∑
e∈EG

Q+
(i,r),e{1|A

G
n,e = −1} −Q−(i,r),e{1|A

G
n,e = 1}

. . .+
∑
z∈Zn

(
h̃z

LHVH2

+
1− h̃z
LHVCH4

)
ΓZ(i,r,o),z

. . . ∀(i, r) ∈ (I ×R) , ∀n ∈ NG (A.8)
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The molar quantity of fossil natural gas produced locally (or transferred from outside the modeled

region) is computed using
ΓG
(i,r),n

LHVNG
. All gas flows entering the node are identified using the nominal

nodal-edge incidence matrix AG and the variables for positive and negative flows Q+
(i,r),e, Q

−
(i,r),e.

Finally, any local net-zero emissions gas production is included and adjusted by the average molar

heating value of the gas (accounting for the share of hydrogen).

To assess the flows of energy on the system, we introduce new decision variables for the positive

and negative flows of energy. We include constraints to set the value of energy flows equal to the

molar flows multiplied by the energy content of gas delivered by the node that lies at the pipeline

entrance.

E+
(i,r),e ≥ 0, E−(i,r),e ≥ 0 ∀(i, r) ∈ (I ×R) , ∀e ∈ EG (A.9a)

E+
(i,r),e = Q+

(i,r),e

∑
n∈NG

h(i,r),n{1|AGn,e = 1} ∀(i, r) ∈ (I ×R) , ∀e ∈ EG (A.9b)

E−(i,r),e = Q−(i,r),e

∑
n∈NG

h(i,r),n{1|AGn,e = −1} ∀(i, r) ∈ (I ×R) , ∀e ∈ EG (A.9c)

For any variable, like h(i,r),n, that is equal to a discretized summation across binary variables,

we can linearize the product of this term with another continuous variable by introducing additional

continuous variables to represent the tightly-constrained McCormick relaxation of the bilinear term.

In this case, we must linearize the term Q+
(i,r),e

∑
n∈NG

h(i,r),n{1|AGn,e = 1} by introducing a new

set of continuous variables p+
(i,r),e,k = Q+

(i,r),e

∑
n∈NG

h(i,r),n{1|AGn,e = 1} constrained by

p+
(i,r),e,k ≤ Qe(

∑
n∈NG

q(i,r),n,k{1|AGn,e = 1}) (A.10a)

p+
(i,r),e,k ≤ Q

+
(i,r),e (A.10b)

p+
(i,r),e,k ≥ Q

+
(i,r),e −Qe(1− (

∑
n∈NG

q(i,r),n,k{1|AGn,e = 1})) (A.10c)

p+
(i,r),e,k ≥ 0 (A.10d)

Summing across p+
(i,r),e,k∀k ∈ K allows us to evaluate and constrain E+

(i,r),e.

E+
(i,r),e =

∑
k∈K

βhkp
+
(i,r),e,k ∀(i, r) ∈ (I ×R) , ∀e ∈ EG (A.11)

To ensure that only one discrete value is active, and the sum of the relaxation variables equals
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the desired quantity, we include the following constraints:

∑
k∈K

q(i,r),n,k = 1, (A.12a)

∑
k∈K

p+
(i,r),e,k = Q+

(i,r),e, (A.12b)

and an identical set of variables and constraints are included for E−(i,r),e.

Using these energy flow variables, we constrain each nodal heating value to equal the energy

entering the node divided by the entering molar quantity:

h(i,r),n =
ΓG(i,r),n +

∑
z∈Zn

ΓZ(i,r,o),z +
∑
e∈EG E

+
(i,r),e{1|A

G
n,e = −1} − E−(i,r),e{1|A

G
n,e = 1}

M(i,r),n
(A.13)

by rearranging and using the same relaxation formulation for the product of h(i,r),nM(i,r),n (using

a new set of continuous relaxation variables m(i,r),n,k:

m(i,r),e,k ≤M(
∑
n∈NG

q(i,r),n,k{1|AGn,e = 1}) (A.14a)

m(i,r),e,k ≤M(i,r),n (A.14b)

m(i,r),e,k ≥M(i,r),n −M(1− (
∑
n∈NG

q(i,r),n,k{1|AGn,e = 1})) (A.14c)

m(i,r),e,k ≥ 0 (A.14d)

We similarly constrain this evaluated quantity of energy delivered to be equal to the energy

entering the node:

∑
k∈K

m(i,r),e,k = M(i,r),n (A.15a)

∑
k∈K

βhkm
+
(i,r),e,k = ΓG(i,r),n +

∑
z∈Zn

d(i,r,o),zηz +
∑
e∈EG

E+
(i,r),e{1|A

G
n,e = −1} − E−(i,r),e{1|A

G
n,e = 1}.

(A.15b)

Lastly, we modify the gaseous energy balance constraint using the computed energy flows across

each pipeline:

ΓG(i,r),n +
∑
z∈Zn

ΓZ(i,r,o),z +
∑
e∈EG

AGn,e(E
+
(i,r),e − E

−
(i,r),e) + ΦG(i,r,o),n +

∑
ω∈(ΩNG∩Ωn)

ΓP(i,r,o),ωηω (A.16)

Note that a molar balance constraint at each node is not necessary (and would be redundant) as

we implicitly require that the average mole-weighted average heating value of gases entering a node

is identical to the mole-weighted average heating value of gas delivered by a node. This logically
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ensures that the energy balance implies a molar balance.

This same mathematical approach can be used to track any molar-weighted (or mass-weighted)

gaseous fuel quantity throughout the network. This could include carbon emissions intensity, trace

constituent concentrations, or mole fractions of hydrogen. Tracking more molar, nodal quantities

necessarily introduces more binary variables. As such, relaxations should be explored as avenues to

reduce computational complexity of the mixed integer quadratic program.

A.5 Alternative average cost of energy model

Here, we present an alternative approach to modeling the average cost of energy delivered to con-

sumers. The formulation presented in Section 2.3.9 levelizes the costs of the electric power sector

across all electricity generated. Consequently, the average cost of net-zero emissions gas is a function

of this average cost of electric power. In this section, we present a formulation wherein the net-zero

emissions gas production units are exposed to the wholesale electric power cost (as estimated by the

variable costs of generation). Consequently, the fixed costs of the electric power sector are assumed

to be recovered across the remainder of electricity generation not used for electro-fuels.

For simplicity of exposition, we re-introduce quantities for total generation of electrical power

ΓPi , core deliveries of gas ΦG
i , and production of net-zero emissions gas ΓZi on an annual basis:

ΓPi =
∑
r∈R

∑
o∈O

∑
ω∈Ω

w(i,r)Γ
P
(i,r,o),ω ∀i ∈ I (A.17a)

ΦG
i =

∑
r∈R

∑
o∈O

∑
n∈NG

w(i,r)Φ
G
(i,r,o),n ∀i ∈ I (A.17b)

ΓZi =
∑
z∈Z

∑
r∈R

∑
o∈O

w(i,r)Γ
Z
(i,r,o),z ∀i ∈ I (A.17c)

In addition, we introduce a new quantity for total annual electricity consumed for production of

electro-fuels:

ΦZ
i =

∑
z∈Z

∑
r∈R

∑
o∈O

w(i,r)Φ
Z
(i,r,o),z ∀i ∈ I (A.18)

and a set of terms quantifying the revenue requirement for the electric power sector, and natural

gas sector, excluding any costs associated with elecro-fuels consumption:

RRPi = Cgen,Pi + Cfuel,Pi + Cstor,Pi + CT&D,P
i + CCO2

i εPi ∀i ∈ I (A.19a)

RRGi = Cfuel,Gi + Cstor,Gi + CT&D,G
i + CCO2

i εGi ∀i ∈ I (A.19b)

Using the total societal cost terms defined in Eq. (2.73) - (2.74), we define the average costs of

delivered electric power for wholesale sales µP,wsi , the average cost of electric power for retail sale
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µP,rsi , and gas µGi as a function of the average cost of net-zero emissions gas production µZi .

µP,wsi =
Cfuel,Pi + CCO2

i εPi + ξPi (µZi − CGi )

ΓPi
∀i ∈ I (A.20a)

µZi =
Cgen,Gi + ΦZ

(i,r,o),zµ
P,ws
i

ΓZi
∀i ∈ I (A.20b)

µGi =
RRGi + ξGi (µZi − CGi )

ΦG
i

∀i ∈ I (A.20c)

µP,rsi =
RRPi + ξPi (µZi − CGi )− µP,WS

i ΦZ
(i,r,o),z

ΓPi −ΦZ
(i,r,o),z

∀i ∈ I (A.20d)

The average cost of wholesale electric power µP,wsi is estimated in Eq. (A.20a) to be the sum

of variable operating costs Cfuel,Pi , negative emissions offsets CCO2
i εPi , and the incremental cost

of net-zero emissions gas purchases ξPi , assessed at the average cost of net-zero emissions gas pro-

duction µZi , relative to the cost of commodity gas already included in Cfuel,Pi . These costs are

then levelized across total electricity generation ΓPi . This bifurcated cost-allocation structure for

wholesale electricity costs allows the cost of net-zero emissions gas µZi to be computed as a function

of wholesale electric power costs µP,wsi in Eq. (A.20b). The cost of net-zero emissions gas is equal

to the sum of capital investments and operating costs of net-zero emissions production Cgen,G and

the costs of electric power inputs ΦZ
i (as assessed at the wholesale cost). These costs are levelized

across the total production of net-zero emissions gas ΓZi .

The average costs of gas delivered can be straightforwardly computed in Eq. (A.20c) using the

fuel costs of commodity natural gas to serve core demands Cfuel,Gi , the costs of gas storage Cstor,Gi ,

the costs of distribution infrastructure CT&D,G
i and the costs of negative emissions offsets for the

gas sector CCO2
i εGi . In addition, the gas sector purchases of net-zero emissions gas ξGi are assessed

at the incremental cost of net-zero emissions gas µZi relative to commodity gas costs CGi . These

costs are levelized for recovery across all core gas demands served ΦG
i .

Finally, in Eq. (A.20d), the average cost of retail electricity is computed by taking the total

revenue requirement for the electric power sector, subtracting any costs recovered through wholesale

sale of electricity for net-zero emissions production, and dividing by the total electricity generated

for final consumption.

The term in Eq. (A.20a) is substituted in Eq. (A.20b) to compute the value of µZi in closed

form. Subsequently, the average cost of gas µGi can be computed using Eq. (A.20c) and the value of

µZi . Similarly, the average cost of electricity delivered for retail sales µP,rsi can be computed using

Eq. (A.20d) and the value of µZi .

The two cost-allocation formulations presented in this dissertation capture only two plausible

simplifications of the cost recovery mechanisms that will ultimately govern the revenue sufficiency

to fund the transition in regulated gas-electric energy systems. As such, these results are intended
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as indicative, rather than definitive, to capture plausible trends in the evolution of costs of energy

delivered to end-use consumers.

A.6 Endogenous consumer adoption modeling

The model formulation in Chapter 2 identifies the cost-optimal investment decisions for all gas and

electricity sector investments as well as appliance investments made by populations of customers.

Appliance investment decisions made by individual consumers can be shaped by policy through

building codes and efficiency standards. However, consumer preferences and relative economics will

also jointly govern investment.

Most prominent modeling efforts for simulation of economy-wide decarbonization pathways sim-

plify these challenges by imposing policy decisions governing the sales share of new appliances. The

sales penetration of desired emissions-free appliances for a future year is fixed by assumptions and

a logarithmic s-curve is interpolated between present sales penetrations and the future value. This

adoption curve is paired with a stock rollover tracking of appliance failure in order to compute the

total demands for gas or electrical energy in a given year. These analyses similarly find a spiral in

volumetric gas rates accompanies the transition to electric appliances for space and water heating.

One major shortcoming of this approach is the failure to address potential equity impacts across

customers. Typically, sales share curves are applied uniformly across the entire appliance population.

However, it is routinely hypothesized that a spiral in gas rates may disproportionately impact low-

income customers without the upfront capital to transition to more expensive heat pump appliances

or to finance the necessary building shell upgrades or structural retrofits [20].

With some additional effort, we can endogenously include such cost-allocation, rate-making, and

consumer adoption features in the proposed modeling framework while preserving the convexity

of the optimization program. In this section, we present a preliminary mathematical formulation

to implement these policy and economic features alongside the set of centrally-planned investment

decisions. First, we present the convexified formulation for cost-allocation and rate-making opti-

mization in Section A.6.1. Next, we illustrate how these volumetric rates and fixed charges can be

used to constrain appliance adoption decisions in Section A.6.2. Finally, in Section A.6.3, we discuss

a relaxed version of this optimization program that will conduct scenario-based simulation of system

evolution in a sequential, receding time horizon planning optimization.

A.6.1 Rate-making

Similar to the gas quality problem discussed in Section A.4, to evaluate the average cost of gas and

electricity charged to ratepayers, we must compute a series of weighted average values endogenously.

The total costs assessed to the electric or gas utility must be recovered across the optimized rate

structure.
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As illustrated in our ex-post calculations of average costs of gas and electricity delivered (see

Section 2.3.9), we know that the total revenue requirement for gas and electric entities can be

calculated as a closed form equation using the average cost of electricity delivered. These equations

are replicated below for completeness:

µPi =
Cgen,Pi + Cfuel,Pi + Cstor,Pi + CT&D,P

i + ξPi (µZi − CGi )

ΓPi
∀i ∈ I (A.21a)

µGi =
Cfuel,Gi + Cstor,Gi + CT&D,G

i + ξGi (µZi − CGi )

ΦG
i

∀i ∈ I (A.21b)

µZi =
Cgen,Gi +

∑
r∈R

∑
o∈O

∑
z∈Z w(i,r)Φ

Z
(i,r,o),zµ

P
i

ΓZi
∀i ∈ I (A.21c)

To compute these values endogenous to the optimization program without introducing non-

convex terms, we adopt a slightly different approach. Here, we use a series of binary indicator

variables with corresponding coefficients that are discretized across the plausible range of average

costs of fuel delivered for net-zero emissions gas µZi , electric power µPi , and gas µGi . These terms

compute the total revenue required to ensure cost recovery and divide it by the amount of energy

produced or delivered.

First, the revenue requirements for each fuel production or delivery system are established using

their fixed costs and inter-related average costs:

RRZi = αZi + βZi µ
P
i ∀i ∈ I (A.22a)

RRPi = αPi + βPi µ
Z
i ∀i ∈ I (A.22b)

RRGi = αGi + βGi µ
Z
i ∀i ∈ I (A.22c)

For simplicity of exposition, we use coefficients α and β to represent the following cost terms:

αZi = Cgen,Gi ∀i ∈ I (A.23a)

βZi = +
∑
r∈R

∑
o∈O

∑
z∈Z

w(i,r)Φ
Z
(i,r,o),z ∀i ∈ I (A.23b)

αPi = Cgen,Pi + Cfuel,Pi + Cstor,Pi + CT&D,P
i − ξPi CGi (A.23c)

βPi = ξPi ∀i ∈ I (A.23d)

αGi = Cfuel,Gi + Cstor,Gi + CT&D,G
i − ξGi CGi ∀i ∈ I (A.23e)

βGi = ξGi ∀i ∈ I (A.23f)

The decision variable for each average cost of energy µi is constrained to be equal to the sum of

binary indicator variables qk,i across the set of K discretized coefficients for each fuel type, net-zero
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emissions gas cZk , electric power cPk , and natural gas cGk :

µZi =
∑
k∈K

qZk,ic
Z
k ∀i ∈ I (A.24a)

µPi =
∑
k∈K

qEk,ic
P
k ∀i ∈ I (A.24b)

µGi =
∑
k∈K

qGk,ic
G
k ∀i ∈ I (A.24c)

Finally, we constrain all average costs of energy to equal the total revenue requirement for each

fuel system:

ΓZi µ
Z
i = RRZi ∀i ∈ I (A.25a)

ΓPi µ
P
i = RRPi ∀i ∈ I (A.25b)

ΦG
i µ

G
i = RRGi ∀i ∈ I (A.25c)

As such, McCormick relaxation schemes (as described in Section A.4) would be required for the

following bilinear terms:

βZi µ
P
i ∀i ∈ I (A.26)

βPi µ
Z
i ∀i ∈ I (A.27)

βGi µ
Z
i ∀i ∈ I (A.28)

ΓZi µ
Z
i ∀i ∈ I (A.29)

ΓPi µ
P
i ∀i ∈ I (A.30)

ΦG
i µ

G
i ∀i ∈ I (A.31)

With the above, we have presented a framework for evaluating the revenues collected by a gas

or electricity utility and constraining this to equal the revenue requirement. Here, we use simple

volumetric rates equal to the average cost of gas and electricity delivered. Implicit assumptions

include that electricity generators are billed at the commodity cost of natural gas, with no contri-

bution towards the gas utility revenue requirement. Also, producers of net-zero emissions gas pay

the volumetric rate for electricity, and are not exposed to a wholesale price.

At the expense of computational complexity, it is obvious that this generalized formulation can

be extended to include different rate classes, imposed on a range of customer classes, with fixed

charge components if desired. This flexible framework would enable experimentation across a range

of innovative co-optimized rate designs, however the computational burden of introducing additional

binary variables for each component of the rate structure or customer-class may make the problem

intractable.
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A.6.2 Appliance-adoption

Retiring appliances in each investment period must then be replaced by substitute options. The

adoption share of each candidate replacement can be assessed using the relative cost of ownership to

the customer based on upfront capital costs, and ongoing expected costs of energy. The evaluated

and/or co-optimized rate structures (as described in Section A.6 could be used to compute the

expected total cost of ownership in each investment period for all of the candidate appliances a ∈ A.

Appliance adoption shares can be modeled as a function of total cost of ownership, relative to

the cost of substitute appliances. These adoption functions must be exogenously specified and will

likely introduce additional nonlinear (or discretized binary) terms to evaluate the total number of

new appliances entering the population in each investment period.

Consumer preferences could be incorporated through a downward or upward adjustment imposed

on the total cost of ownership (i.e., an amount or percentage more they are willing to pay for one

appliance as compared to another). Total cost of ownership calculations can also account for different

discount rates of different customer classes through the set of appliances and end-use energy services.

Expanding this set will require additional appliance classes a ∈ A for each customer class that you’d

like to model. For example, in the presented case study, we include only one class of residential water

heater for all customers. If you wanted to impose a different discount rate on high-income customers

than for low-income customers, you would have two residential water heater classes in A, but one

would be designated to the end-use service u ∈ U “residential water heating for customers who make

under $40,000” and the other would be designated “residential water heating for customers who

make over $40,000.”

Again, additional segmentation of customer classes and appliance populations will further expand

the dimensionality of the problem and necessary number of binary variables and their McCormick

relaxation counterparts. However, segmentation of the customer population is essential to under-

stand the differential impact of climate policies and energy transitions on low-income populations

or disadvantaged communities.

A.6.3 Sequential, receding-horizon planning

The described framework would enable endogenously co-optimized utility investment decisions, rate

structures, and (with some additional effort) agent-based appliance adoption decisions. However, this

fully co-optimized approach will likely prove too computationally burdensome to solve on practical

time scales. Additionally, this approach runs the risk of over-optimizing the system and may not be

the most beneficial approach to produce practical insights for regulators and system planners.

Alternatively, a sequential, receding-horizon planning optimization may be used to test differ-

ent discrete and exogenously-specified cost-allocation and rate-making approaches in scenario-based

analysis. This optimization routine would solve the program in Eq. 2.1 for a sequence of forward-

looking investment years. The investment decisions for the first year are then fixed at their optimal
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values, and the total system costs are allocated across electric and gas rate-payers according to an

exogenously specified formulation.

Using these rate structures, we compute the expected total cost of ownership of electric- and gas-

powered appliances. The relative economics of all candidate appliances are then used to simulate

agent-based consumer adoption decisions for the current investment year. These utility and cus-

tomer investment decisions are incorporated as the initial conditions for all subsequent investment

optimizations.

This sequential, receding-horizon approach does not offer the model perfect foresight and, in some

respects, may reflect a more realistic trajectory of system evolution. This may allow for comparative

analysis of different rate-making or cost-allocation proposals and how the central-planning process

may adapt across the planning horizon to exogenous decisions made by private actors.

A.7 Binary relaxations

In order to ensure model tractability, we include several potential binary relaxation options for

future experimentation. All binary variables in the optimization program can be relaxed to contin-

uous variables between 0 and 1 with the introduction of one additional quadratic constraint. This

approach is inspired by the work of [290].

This approach is illustrated for an arbitrary binary variable y below:

0 ≤ y ≤ 1 (A.32a)

0 ≤ ŷ ≤ 1 (A.32b)

(y − ŷ)2 = 1 (A.32c)

(A.32d)

The binary variable y is relaxed to a continuous variable bound by 0 and 1 (Eq. (A.32a)). In

Eq. (A.32b), we introduce a helper decision variable ŷ as another continuous variable bound by 0

and 1. And in Eq. (A.32c) the square of the difference between these two is constrained to equal

unity. The only values that will satisfy this quadratic constraint with equality are y = 0, ŷ = 1 and

y = 1, ŷ = 0.

This approach introduces non-convexity due to the quadratic equality constraint in Eq. (A.32c).

However, as advances are made in non-convex solvers, it may prove more computationally practical

to solve the local optimization with a gradient-based or interior point optimizer, rather than solving

the mixed integer linear program to global optimality via branch-and-bound algorithms.
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Supplemental information:

Molten-media pyrolysis

B.1 Nomenclature

Design variables:

ṅg0 Molar flow rate of gas from pipeline [mol/s]

AHXR Heat exchanger area [m2]

H Reactor height [m]

R Reactor radius [m]

VR Reactor volume [m3]

ηCH4
Fractional CH4 conversion [mol CH4 converted/mol CH4 entering

reactor]

re Exit radius [m]

Ls Thickness of steel pressure vessel [m]

Lins Thickness of insulation layer [m]

LMgO Thickness of Magnesium-Oxide ceramic layer [m]
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Physical variables:

Tg1 Temperature of gas at reactor entrance [°C]

Tg2 Temperature of gas at reactor exit [°C]

Tg3 Temperature of gas after heat recovery [°C]

ṅg2 Molar flow rate of gas exiting reactor [mol/s]

V̇g0 Volumetric flow rate of gas from pipeline [m3/s]

V̇g1 Volumetric flow rate of gas at reactor entrance [m3/s]

V̇g2 Volumetric flow rate of gas at reactor exit [m3/s]

ṁg0 Mass flow rate of gas from pipeline [m3/s]

ṁg1 Mass flow rate of gas at reactor entrance [m3/s]

ṁg2 Mass flow rate of gas at reactor exit [m3/s]

Pg1 Pressure of gas at reactor entrance [MPa]

Pg2 Pressure of gas at reactor exit [MPa]

xH2
Mass fraction of hydrogen [%]

xCH4 Mass fraction of methane [%]

QHXR,C Rate of heat transfer from cold stream [MW]

QHXR,H Rate of heat transfer from hot stream [MW]

r Rate of reaction [mol s−1 m−3]

yH2 Mole fraction of hydrogen [%]

yCH4
Mole fraction of methane [%]

ε1 Gas holdup [m3 gas/m3 reactor volume]

Vgj Mean drift velocity [m/s]

jg Superficial gas velocity [m/s]

j+
g Dimensionless superficial gas velocity [-]

V +
gj Dimensionless drift velocity [-]

Vmp Transition superficial velocity for homogenous dilute flow [m/s]

Gs Flux of solid particles entrained [m3/m2]

D Diameter of exit orifice [m]

Ar Archimedes number [-]
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Operational variables:

Q̇loss Thermal losses from reactor [MW]

Q̇steel Heat transfer through steel layer [MW]

Q̇ins Heat transfer through insulation layer [MW]

Q̇MgO Heat transfer through MgO ceramic layer [MW]

Q̇reactor Heat transfer into reactor [MW]

Ẇblower Electric power demand for blower [MW]

Ẇcyclone Electric p demand for cyclone [MW]

ṁH2
Mass flow rate of hydrogen produced [kg/s]

ṁC,solid Mass flow rate of solid carbon produced [kg/s]

ṁCO2,seq Mass flow rate of carbon dioxide (equivalent) sequestered [kg/s]

ṁCO2,av Mass flow rate of carbon dioxide lifecycle emissions avoided [kg/s]

ṁCO2,avoidedstackMass flow rate of carbon dioxide stack emissions avoided [kg/s]

Pe− Total rate of electric power demand from grid [MW]

Pg,i Total rate of gaseous fuel demand from pipeline [MW]

Pg,o Total rate of gaseous fuel produced [MW]

LMTDHXR Log mean temperature difference [K]

OpEx Operational expenses [$/year]

Rev Revenues [$/year]

FOM Fixed operations and maintenance expenses [$/year]

TCR Total Capital Requirement [$]

PCe Purchase cost of equipment [$]

NPV Net Present Value [$]

LCOE Levelized cost of energy [$/MMBtu]

LCOH Levelized cost of hydrogen [$/kg H2]
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Physical parameters:

cp,CH4
Specific heat coefficient [kg/kg-K]

cp,H2 Specific heat coefficient [kg/kg-K]

R Universal gas constant []

∆Hrxn Reaction enthalpy [kJ/mol]

HHVH2
Higher heating value of hydrogen [MJ/kg]

HHVCH4 Higher heating value of methane [MJ/kg]

LHVH2 Lower heating value of hydrogen [MJ/kg]

LHVCH4
Lower heating value of methane [MJ/kg]

MH2
Molar mass of hydrogen [g/mol]

MCH4 Molar mass of methane [g/mol]

MCO2 Molar mass of carbon dioxide [g/mol]

MC Molar mass of carbon [g/mol]

kMgO Thermal conductivity of magnesium oxide ceramic layer [W/m-K]

kins Thermal conductivity of insulation layer [W/m-K]

ksteel Thermal conductivity of steel layer [W/m-K]

ρm Molten media density [kg/m3]

ρCH4
Density of inlet methane gas [kg/m3]

C0 Unitless distribution parameter for round ducts [-]

σ Surface tension of molten media [N/m]

ρH2
Density of product hydrogen gas [kg/m3]

ρp Density of solid carbon particles [kg/m3]

µH2 Viscosity of product hydrogen gas [kg m−1 s−1]

Ea Activation energy [kJ/mol]

A Pre-exponential factor [mL cm−2 s−1]

kB Boltzmann’s constant [m2 kg s−2 K−1]
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Design parameters:

Pr0 Reactor pressure [bar]

Tr0 Reactor temperature [°C]

Tg0 Temperature of gas from pipeline [°C]

Pg0 Pressure of gas from pipeline [MPa]

UHXR Heat transfer coefficient

rb Bubble radius [m]

CCH4 Methane concentration in reactant

dp Particle diameter [m]

Pboiler Rate of thermal power demand for boiler [MW]

ηboiler Efficiency of boiler [%]

η
CH4

Minimum molar conversion fraction [%]

ζm Loss rate of molten media [%]

Cap Boiler capacity [MW]

IRR Internal Rate of Return [%]

LF Lang Factor [unitless]

T Lifetime of project [years]

cf Capacity factor [%]

pe− Price of electricity [$/MWh]

pNG Price of natural gas [$/MMBtu]

pCsolid Price of solid carbon [$/kg]

pCO2av Price of carbon emissions avoided [$/kg CO2]

pCO2seq Price of carbon emissions sequestered [$/kg CO2]

cm Cost of molten media [$/kg Ni-Bi]

EFe− Emissions factor for electricity [kg CO2/MWh]

EFNG Emissions factor for natural gas [kg CO2/MMBtu]

CISMR−H2,stackCarbon intensity of hydrogen from steam-methane reforming [kg

CO2/kg H2]
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B.2 Heat exchange modeling

The below empirical specific heat equations are used for gaseous heat exchange per [218]:

cp,H2(T ) = aH2T + bH2T
2 + cH2T

3 + dH2T
4 (B.1a)

cp,CH4
(T ) = aCH4

T + bCH4
T 2 + cCH4

T 3 + dCH4
T 4 (B.1b)

Coefficients
Gas a b c d
H2 29.11 -0.1916*10−2 0.4003*10−5 -0.8704*10−9

CH4 19.89 5.024*10−2 1.269*10−5 -11.01*10−9

Table B.1: Coefficients for empirical specific heat equations.

B.3 Plug flow reactor model

In order to validate the mathematical model for the reactor kinetics, we employ Aspen HYSYS

process simulation software. The Aspen HYSYS model was a kinetically controlled plug flow reactor

with a single pyrolysis reaction. The kinetic parameters derived experimentally by Upham et al.

(2017) were employed [190]. Various reactor dimensions, volumes, and gas holdup values were

explored. The mole fraction produced was found to only be a function of the residence time.

The residence time can be converted to a reactive volume by multiplying by the volumetric flow

rate, allowing for various reactor configurations to be compared on an identical baseline. Several

simulations were conducted and the mole fraction of H2 in product gas stream is compared in Figure

B.1 to that predicted by the model derived in Upham et al., 2017, and the model used in this work.

While the mathematical formulation used by Upham et al. (2017) and ASPEN HYSYS accounts

for the changing concentration of reactants across the plug-flow reactor, it does not appear that

these models account for any consequent changes as mole creation results in a larger volume and

reactant surface area.

B.4 Capital cost correlations

The Chemical Engineering literature contains a well-established body of work on the topic of capital

cost estimation for novel process equipment. Table B.2, below, includes all capital cost estimation

equations employed and their source. Some equations include adjustment factors for materials, fm,

and all values were updated to 2017$ using CEPCI.
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Figure B.1: Results of our mathematical model as compared to the model derived in Upham et al.
(2017) and the outputs of a similarly tuned Aspen HYSYS reactor model.

Equipment (e) Purchased cost (PCe) Source
Heat exchanger fm (28000+54A1.2

HXR ), fm = 1.7 [226]
Pressure vessel (11600+34m0.85

shell ) [226]

Cyclone fm e0.12 ln V̇g2 , fm = 9 [219]

Bag filter e9.9+0.5575 ln V̇g2 [219]

Transformer ((Q̇loss + Q̇reactor))/((106W )/MW ) ($
42850)/MW

[229]

Materials Purchased cost (PCe) Source
Insulation C(C− ins)ρ(C− ins)V(C− ins) C(C−

ins)=$0.1/kg
[184]

Ceramic (Mg-O) C(Mg − O)ρ(Mg − O)V(Mg − O)
C(Mg −O)=$0.36/kg

[184]

Molten metal (Ni-
Bi)

(CN ixN i+CBixBi)ρm(1− ε)VR ,
xNi=0.1 xBi = 0.9 CNi=$6/lb,
CBi=$5/lb

(InvestmentMine.com),
(Rotometals.com)

Resistive elements
(Si-C)

C(Si − C) ρ(Si − C) V(Si − C),
C(Si− C)=$36/kg

[223]

Table B.2: Capital cost estimation equations employed for a variety of equipment and materials.
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B.5 Operational cost estimates

Power consumption of the cyclone, Ẇcyclone [W] is estimated from equations in[219].

Ẇcyclone = 2000V̇g2a (B.2)

B.6 Radial conduction modeling

A multi-layered radial conduction model was employed to estimate the shell losses from the pyrolysis

reactor

Q̇ceramic =
2πR2kMgO(Tr1 − Tr2)

LMgO
+

2πHkMgO(Tr1 − Tr2)

ln
R+2LMgO

R+LMgO

(B.3a)

Q̇insulation =
2πR2kins(Tr2 − Tr3)

Lins
+

2πHkins(Tr2 − Tr3)

ln
R+2LMgO+Lins

R+2LMgO

(B.3b)

Q̇steel =
2πR2ksteel(Tr3 − Tr4)

Lsteel
+

2πHksteel(Tr3 − Tr4)

ln
R+2LMgO+Lins+Lsteel

R+2LMgO+Lins

(B.3c)

Q̇loss,rad = 2πHσrad(T
4
r4 − T 4

amb)(R+ 2LMgO + Lins + Lsteel) + 2πR2σrad(T
4
r4 − T 4

amb) (B.3d)

Q̇loss,conv = 2πHhconv(Tr4 − Tamb)(R+ 2LMgO + Lins + Lsteel) + 2πR2hconv(Tr4 − Tamb) (B.3e)

Q̇loss = Q̇loss,rad + Q̇loss,conv (B.3f)

Q̇loss = Q̇steel = Q̇insulation = Q̇ceramic (B.3g)
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Supplemental information:

Greenhouse gas accounting

C.1 Nomenclature

Nomenclature for Section 4.2:

i ∈ SP Set of specified purchases

SPNG ⊂ SP Subset of specified purchases from natural gas-fired generators

SPF ⊂ SP Subset of specified purchases from fossil-fueled generators (excluding

natural gas)

SPZ ⊂ SP Subset of specified purchases from non-fossil-fueled generators

GPi Specified gross purchase i [MWh/year]

WSi Specified wholesale sales of gross purchase i [MWh/year]

NPi Specified net purchase i [MWh/year]

U Unspecified purchases [MWh/year]

RS Retail electricity sales [MWh/year]

TNP Total net purchases [MWh/year]

ANPi Adjusted net purchase for specified purchase i [MWh/year]

EFi Emissions factor for specified purchase i [tCO2e/MWh]

EFU Emissions factor for unspecified purchases [tCO2e/MWh]

EI Emissions intensity estimate for a portfolio [tCO2e/MWh]

183
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Nomenclature for Section 4.3:

Ei,t Hourly emissions in time-step t for balancing authority i [tCO2/hour]

αg Emissions factor for generator g [tCO2/MWh]

Pg,t Hourly power generation in time-step t for generator g [MWh/hour]

ui,t Electricity flows into each balancing authority i during time-step t

[MWh/hour]

vi,t Electricity flows out of each balancing authority i during time-step t

[MWh/hour]

xi,t Emissions intensity of electricity delivered in each balancing authority

i during time-step t [tCO2/MWh]

di,t Demand for electricity in a balancing authority i during time-step t

[MWh/hour]

IG Embodied emissions imports to a balancing authority i [tCO2/year]

λg,i,t Specified electricity transfers from generator g to balancing authority

i in time-step t [MWh/hour]

ag,i Nominal transfer pathway indicator for whether power output from

generator g is wheeled through or to balancing authority i [bin.]

E∗i,t Contract-adjusted emissions in time-step t for balancing authority i

[tCO2/hour]

u∗i,t Contract-adjusted flows into each balancing authority i during time-

step t [MWh/hour]

x∗i,t Contract-adjusted emissions intensity of electricity delivered in each

balancing authority i during time-step t [tCO2/MWh]

Li Emissions leakage liability assessedfor balancing authority i

[tCO2/year]

γg Non-baseload factor for each generator g

ξg Capacity utilization factor for each generator g [%]

ξ Cut-in capacity utilization factor [%]

β Regression coefficient [tCO2/MWh]
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C.2 Methodological comparison to de Chalendar et al., (2019)

The inspiration for this approach to emissions leakage quantification was drawn from the work

of de Chalendar et al., (2019) [237], who leverage consumption-based accounting in the electric

power sector to quantify emissions trans-shipments between balancing authorities and the associated

divergence between production-bsased emissions and consumption-based emissions liabilities.

Several data quality issues required attention in the EIA Form 930 operating system data [90],

including missing or inconsistent data on net generation, demand, and transfers between balancing

authorities. To reconcile interchanges between balancing authority pairs where inconsistent data

are reported, we used the average of the two reported numbers. To correct missing data entries, we

replaced any missing hourly data with the value reported for the same hour of the preceding day.

After making these adjustments, we aggregated hourly continuous emissions monitoring system

(CEMS) emissions for each unique EIA Plant ID and normalized the hourly values by total annual

emissions reported. We multiplied the normalized emissions profiles by the annual emissions for that

plant as reported in eGRID for 2016. This adjustment ensures that hourly emissions for biomass

and combined heat and power plants are all adjusted appropriately to represent the CO2 emissions

that can be attributed to the electric power furnished by each plant, consistent with eGRID. This

approach also assumes that any emitting units at the plant that do not meet reporting thresholds

for CEMS will operate at similar times as the reporting units.

We then aggregated plants by their resident balancing authority and attributed hourly emissions

to each balancing authority. As a last step, we compared annual emissions as estimated by this

bottom-up method to the annual GHG emissions reported for each balancing authority in eGRID.

The discrepancy between these figures represents emissions from plants that do not report hourly

data to CEMS. We allocated these missing emissions for each balancing authority across each hour

in the year, with the allocation proportionately weighted to total net generation for the balancing

authority reported in each hour, according to EIA Form 930 [90].

Here, we adopt a similar approach with slight modifications for simplicity. Primary differences

include the following:

In order to reconcile the EPA’s Air Markets Program Data (AMPD) with the reported emissions

for each plant in eGRID, we use AMPD solely for the normalized profile of emissions and leverage

eGRID for the magnitude of annual anthropogenic emissions contributions assessed. Previous work

has used additive and multiplicative adjustment factors for biomass and combined heat and power

plants, respectively, based on the eGRID reporting for “adjusted” and “unadjusted” annual CO2

emissions.

In order to account for emissions from plants that are not included in the AMPD data set, we

quantify the difference in annual emissions at the balancing authority level between our hourly data

set (developed as per the previous bullet point) and eGRID’s reporting of balancing authority annual

emissions. We incorporate these additional emissions with an hourly profile proportionate to hourly
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net generation in the balancing authority. This assumes that emissions not reported to AMPD

are generally proportionate in magnitude to total net generation. Previous work has observed the

discrepancy but does not address it.

In cleaning of the hourly electricity system operating data, we adopt two systematic rules. If

data are missing for an hour, we use the reported value for the same hour of the prior day. And

if there are two reported values for the same interchange, we retain the average of the two present

values. Previous work has inspected profiles visually and made manual adjustments to ensure that

profiles match.

These changes cause our consumption-based estimates for embodied emissions to be higher rela-

tive to previous published work. Nevertheless, we consider the effect well within the margin of error

given substantial uncertainties in data quality.

Our results for 2016 are compared to those of de Chalendar et al., (2019), and to the net

generation and emissions recorded in eGRID 2016. Key differences in emissions exist between our

results and previous work as we include all emissions reported in eGRID, and not just those contained

in the CEMS data set. Additionally, the values for net generation diverge slightly from those in

eGRID due to data quality issues in the EIA Form 930 dataset. Further, the annual net generation

for both AZPS and SRP are substantially different from eGRID 2016 due to a misallocation of

generation from Palo Verde Nuclear Plant which is owned by AZPS, but technically dispatches into

SRP. However, these differences do not meaningfully affect the results presented, and more detailed

analysis ought to be done before any emissions factors are adopted by policymakers.

Balancing

Author-

ity Code

This study de Chalendar et al., (2019) eGRID2016

Electricity

[TWh]

Emissions

[MMtCO2]

Electricity

[TWh]

Emissions

[MMtCO2]

Electricity

[TWh]

Emissions

[MMtCO2]

AEC 5.7 3.8 5.7 3.5 5.7 3.8

AECI 21.1 16.6 21.3 15.0 21.3 16.6

AVA 6.6 0.7 7.5 0.7 7.5 0.7

AZPS 51.0 11.3 51.0 10.2 14.7 11.3

BANC 13.1 3.1 9.3 2.8 9.3 3.1

BPAT 113.2 13.8 125.0 13.8 121.6 13.8

CHPD 9.1 0.0 9.2 0.0 9.2 0.0

CISO 164.1 36.0 169.0 32.7 168.8 36.0

CPLE 65.7 20.9 62.6 18.9 62.6 20.9

CPLW 0.0 0.0 1.8 0.0 0.0 0.0

DEAA 1.9 0.8 1.9 0.8 1.9 0.8

DOPD 4.1 0.0 4.3 0.0 4.3 0.0
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DUK 106.0 37.3 114.0 33.8 113.9 37.3

EEI 3.1 3.5 3.2 3.2 3.2 3.5

EPE 3.8 2.2 4.0 2.0 4.0 2.2

ERCO 352.1 192.5 383.0 175.0 383.3 192.5

FMPP 17.1 9.7 14.8 8.8 14.8 9.7

FPC 39.9 26.6 42.3 24.1 42.3 26.6

FPL 120.8 40.0 119.0 36.2 119.3 40.0

GCPD 10.2 0.0 10.2 0.0 5.4 0.0

GRIF 2.1 0.9 2.1 0.8 2.1 0.9

GRMA 7.0 3.3 7.0 3.0 7.0 3.3

GVL 1.6 1.2 1.6 1.1 1.6 1.2

GWA 0.6 0.0 0.6 0.0 0.6 0.0

HGMA 3.4 1.4 3.4 1.3 3.4 1.4

HST 0.0 0.0 0.0 0.0 0.0 0.0

IID 5.7 0.8 5.7 0.8 5.7 0.8

IPCO 11.5 0.8 11.2 0.7 11.2 0.8

ISNE 105.0 30.0 107.0 27.2 106.6 30.0

JEA 13.6 12.3 14.4 11.2 14.4 12.3

LDWP 23.1 13.2 20.8 12.0 20.8 13.2

LGEE 38.2 35.6 37.9 32.3 37.9 35.6

MISO 614.7 432.8 679.0 392.0 679.4 432.8

NEVP 30.3 14.5 34.1 13.1 34.1 14.5

NSB 0.0 0.0 0.0 0.0 0.0 0.0

NWMT 19.5 16.9 19.2 15.4 19.2 16.9

NYIS 135.8 33.4 140.0 30.3 140.1 33.4

OVEC 6.8 11.3 10.0 10.3 10.0 11.3

PACE 45.8 50.3 59.2 45.6 59.2 50.3

PACW 15.7 2.0 10.6 1.8 10.6 2.0

PGE 6.1 1.4 5.3 1.3 5.3 1.4

PJM 815.5 382.4 799.0 347.0 799.1 382.5

PNM 16.6 14.1 15.3 12.8 15.3 14.1

PSCO 38.0 16.3 28.5 14.8 28.5 16.3

PSEI 15.6 1.2 13.4 1.0 5.1 1.2

SC 18.2 16.5 18.5 15.0 18.5 16.5

SCEG 26.8 12.3 27.4 11.2 27.4 12.3

SCL 7.0 0.0 6.7 0.0 6.7 0.0

SEC 11.4 9.2 11.5 8.3 10.9 9.2
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SEPA 1.5 0.0 1.8 0.0 1.4 0.0

SOCO 242.4 139.0 257.0 126.0 256.8 139.0

SPA 6.4 1.7 7.0 1.6 7.0 1.7

SRP 29.8 26.7 29.8 24.2 65.5 26.7

SWPP 260.4 168.1 257.0 152.0 257.5 168.1

TAL 2.6 1.2 2.6 1.1 2.6 1.2

TEC 22.8 15.8 23.2 14.4 23.2 15.9

TEPC 8.8 10.5 10.7 9.5 10.7 10.5

TIDC 1.6 0.7 1.6 0.6 1.6 0.7

TPWR 3.2 0.0 3.5 0.0 3.5 0.0

TVA 162.3 78.0 166.0 70.7 166.3 78.0

WACM 37.9 44.7 44.3 40.6 44.3 44.7

WALC 7.2 2.7 15.3 2.4 15.3 2.7

WAUW 0.4 0.0 3.5 0.0 3.5 0.0

WWA 0.7 0.0 0.7 0.0 0.7 0.0

YAD 0.7 0.0 0.7 0.0 0.7 0.0

Table C.1: Numerical results for net generation and emissions by

balancing authority for the year 2016, as compared to previous

work (de Chalendar et al., (2019)) and eGRID2016 reports.

C.3 Specified import subtraction from consumption-based

accounting

In order to assess the emissions leakage associated with specified import transfers from out-of-

state balancing authorities, we used Power Source Disclosure (PSD) forms, Quarterly Fuel and

Energy Reports (QFER), and CARB’s GHG Emissions Inventory to aggregate a list of source-

identified specified imports from out-of-state balancing authorities. Table C.2 summarizes these

results, presenting the disaggregation of imported electricity and embodied emissions. CARB’s

GHG Emissions Inventory reports gross imported electricity (line (A)) and identifies some portion

of these gross imports as unspecified (line (B)). Of the specified imports, some transfers are from

out-of-state plants that dispatch directly into California balancing authorities; these are quantified

using the CEC’s QFER and reported in line (C). No emissions leakage results from these imports, as

they are interconnected directly to California customers and cannot directly transfer power to other

balancing authorities without changes to the physical grid. Some CARB-reported specified imports

are transfers from ACS entities (line (D)) and most of the remaining specified imports have been

identified using the CEC’s PSD reports (line (E)). Some residual imports could not be identified to
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Specified electricity im-
ports [TWh]

2016 2017

(A) Gross imports, per
[271]

99.7 94.4

(B) Reported as unspeci-
fied, per [271]

21.0 19.0

(C) Identified from
sources in CA balancing
authorities, per [285]

19.2 18.7

(D) Asset Controlling
Supplier imports, per
[284]

18.3 17.0

(E) Identified from
sources in out-of-state
balancing authorities, per
[283]

38.9 38.1

(F) Other non-identified
[A-B-C-D-E]

2.3 1.6

Table C.2: Numerical results for consumption-based accounting simulations for the years 2016 and
2017 with specified imports included and removed from the system. Brackets indicate each row’s data
source or underlying computation, including results of the consumption-based accounting (CBA)
analysis presented here.

a specific source with the available information (line (F)).

In order to manually remove these transfers from the system, we had to assume a transfer pathway

by which these imports would reach California balancing authorities. The assumed transfer balancing

authority is included for every balancing authority from which specified imports are sourced and was

determined by using EIA Form 930 information to determine the most likely transfer pathway. When

the below transfers are aggregated for each unique interchange between balancing authorities, any

final transfers from Bonneville Power Authority were assumed to be split proportionately between

CAISO, BANC, and LDWP based on the relative magnitude of total annual interchange. Finally, in

addition to removing the electricity generation and transfers, the direct emissions from these specified

imports must be removed from the resident balancing authority, as California entities take nominal

responsibility for those GHG emissions. We use plant-specific emissions factors from eGRID2016 in

order to ensure consistency with the other emissions estimates used. The answer may differ slightly

if CARB-adopted source-specific emissions factors are used, but it is not expected to change the

conclusions.

C.4 Reconciliation of CEC and CARB imports reporting

CARB and the CEC report different amounts and compositions of electricity imports to California.

Figure C.1 demonstrates the differences between what is reported for zero-GHG emissions imports
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2016 2017
Resident
BA

Electricity
imports
[TWh]

Direct
emissions
[tons
CO2]

Assumed
Transfer
BA

Resident
BA

Electricity
imports
[TWh]

Direct
emissions
[tons
CO2]

Assumed
Transfer
BA

WALC 1.90 56298 LDWP WALC 1.61 22045 LDWP
DEAA 0.00 1541 SRP DEAA 0.00 0 SRP
GRMA 0.10 44475 AZPS GRMA 0.00 0 AZPS
GRIF 0.11 47612 WALC GRIF 0.11 49043 WALC
HGMA 0.00 0 SRP HGMA 0.00 0 SRP
SRP 9.84 698711 CISO SRP 9.41 141004 CISO
AZPS 0.61 183710 CISO AZPS 0.56 154878 CISO
NWMT 0.00 2802 BPAT NWMT 0.01 875 BPAT
NEVP 4.05 1453506 WALC NEVP 4.32 1329276 WALC
PNM 2.12 2562239 WACM PNM 2.28 2693261 WACM
BPAT 9.89 130848 CISO PGE 1.25 94917 BPAT
PACW 1.25 470039 PACE PACW 0.85 215427 PACE
PACE 2.22 843285 LDWP BPAT 9.14 35353 CISO
AVA 0.66 2297 IPCO PACE 1.97 616229 LDWP
PSEI 0.38 0 CHPD AVA 0.72 3435 IPCO
TPWR 0.34 2651 PSEI PSEI 0.37 0 CHPD
IPCO 0.23 0 PACW PSCO 2.41 9047 PACW
PSCO 1.05 8159 PNM IPCO 0.40 0 PNM
CHPD 0.87 0 BPAT CHPD 1.13 0 BPAT
WACM 0.14 17438 WALC SCL 0.03 0 PSEI
GCPD 1.85 0 BPAT WACM 0.02 17367 WALC
EPE 0.05 0 PNM GCPD 0.90 0 BPAT
GWA 0.58 0 NWMT EPE 0.08 0 PNM
WWA 0.66 0 NWMT SWPP 0.20 0 WACM

TPWR 0.34 2625 PSEI

Table C.3: Specified imports nominally allocated to California and manually removed from the
physical consumption-based accounting model to assess emissions leakage.
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and for unspecified electricity imports.

Figure C.1: Differences between CARB and CEC reporting for specified zero greenhouse gas imports
(a) and unspecified imports (b). In order to explain these differences and produce a harmonized
understanding of specified electricity imports, we reconcile three data sets from the CEC—Total
System Electric Generation [272], Quarterly Fuel and Energy Report [285], and Power Source Dis-
closure (PSD) program [283]—with CARB’s Mandatory GHG Reporting Regulation [169] and GHG
Emissions Inventory [271, 284]. These results are then used to characterize downstream policy
implications.

Our first task is to harmonize data from two different state agencies concerning the portfolio

of resources providing electricity imports to California load serving entities (LSEs). The CEC

publishes Total System Electric Generation (TSEG), based on LSE reporting from Power Source

Disclosure (PSD) forms and the Quarterly Fuel and Energy Report (QFER) [285]. In addition,

CARB maintains California’s GHG Emissions Inventory and reports aggregated data on specified

electricity imports from MRR reporting [169], with some emitting resources disaggregated in the
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inventory documentation [271, 284].

CARB and CEC data diverge due to different conventions in assigning electricity attributes, as

well as different treatment of gross imports and net imports. We identify all specified imports by

their Plant ID where available in each data set. In Figure C.2, we present a disaggregated picture

of specified imports to identify the relationship between these different accounting conventions. All

categories prefaced with “other” are imports for which we could not identify a specific plant that

was furnishing that electricity based on the available data. Our analysis identifies two main findings.

Figure C.2: Comparison of electricity imports as reported by the CARB GHG emissions inventory
and the CEC in TSEG, PSD, and QFER data. The inconsistency between imports labeled “unspec-
ified” can be accounted for by the use of ACS designations by CARB and the difference between
gross and net imports.

First, the two agencies apply different treatment to so-called Asset Controlling Supplier (ACS)

power entities. Pursuant to the MRR, CARB has designated the Bonneville Power Administration

(BPA), Powerex, and Tacoma Power as ACS entities. CARB assigns all imports from each ACS

entity a single emissions factor. CARB considers imports from ACS entities to be specified imports,

which are classified as “primarily hydropower” and included in CARB’s calculation of total zero-

GHG imports from specified sources. (To clarify, CARB assigns small but non-zero emissions factors

to these regions—for example, CARB assigned BPA an emissions factor of 0.0193 tonnes CO2/MWh

in 2017 [291].) In contrast, the CEC categorizes imports from ACS entities without a designated

EIA Plant ID as unspecified imports and does not generically consider them zero-GHG resources.

A similar outcome is observed for 2016 data, as documented in the Supplemental Information.

Second, the two agencies differ in whether they report net or gross imports, with the CEC re-

porting the composition of net imports and CARB reporting gross imports. The CEC uses quarterly

reports from California balancing authorities to first quantify net electricity imports for the year and

subsequently attribute fuel types based on PSD reporting. As a result, the unspecified imports re-

ported in CEC TSEG are not derived from individual load-serving entities’ reporting on unspecified
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electricity transactions. Instead, they are determined in the negative: they represent the difference

between the calculated net electricity imports to California and the sum of imports from specified

sources as reported in the PSD and QFER programs.

The differences in the way the two agencies use identical terms to describe data on electricity

imports can lead to confusion about their emissions implications in downstream policy programs,

such as CARB’s Low Carbon Fuel Standard. CARB’s calculation for the lifecycle emissions of

electricity as a transportation fuel relies on the CEC TSEG data. In the interagency translation,

CARB’s LCFS assumes that unspecified electricity as measured by CEC will have an emissions

intensity similar to natural gas-fired generation [292]. As we have shown above, however, nearly

65% of the total unspecified imports in CEC data reflects about 18 TWh of electricity transfers

from BPA, Powerex, and Tacoma Power that CARB treats as “primarily hydropower.” Applying

an emissions factor of natural gas-fired generation to about 18 TWh of primarily hydropower biases

upwards the emissions intensity used in LCFS for electricity as a transportation fuel. Per recently

adopted regulations implementing Assembly Bill 1110, the CEC will allow ACS entities to have their

wholesale sales classified as “specified system power” with an associated fuel mix and emissions factor

that comports with reporting to CARB under the MRR [169]. The CEC’s new methodology should

resolve much of the reporting discrepancy described above, although will not resolve the differences

due to net versus gross imports.

An identical exercise can be completed for data from the year 2016 as well. 2016 was a year with

lower hydroelectric generation, and so it is interesting to see this trend persist across years with

diverse generation mixes. However, there is an additional inconsistency between reported imports

from natural gas-fired sources. In 2016, the CEC Total System Electric Generation only appears to

include a portion of imports from gas-fired generators that file Quarterly Fuel and Energy Reports

and those included in the Power Source Disclosure filings. The reasons for this difference are unclear,

and no such difference is evident in the 2017 data.

Figure C.3: Comparison of electricity imports as reported by the CARB GHG emissions inventory
and the CEC Total System Electric Generation.
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C.5 Replicating the WCI unspecified emissions factor work-

book

To replicate the legacy default emissions factor as adopted by the California Air Resources Board,

we identified two sets of manual adjustments those calculations made to the raw data sources from

the Energy Information Administration (EIA) Form 923 and Form 860 worksheets [126, 129].

First, nameplate capacity values from Form 860 for each generating unit were de-rated to account

for any partial operation during the year. For example, if a generator came online or retired in

2006, 2007, or 2008, then the nameplate capacity value was decremented to reflect the number of

months the generator was operational in that year. Additional manual modifications were made to

several nameplate capacity records for large coal-fired generators based on conversations with the

plant owner or knowledge of long-duration shut-downs. For example, the Kennecott Utah Copper

Corporation plant (EIA Plant Code 56163) was routinely shut down for 4 months of the year due

to air quality restrictions. These changes increase the annual capacity factor for the plant and often

result in the coal-fired plant no longer being considered “marginal.”

We provide a sampling of screenshots from the workbook in Figure C.4 for illustrative purposes.

Figure C.4: Screen captures of manual adjustments to nameplate capacity values in Western Climate
Initiative (WCI) workbook.

Second, CARB’s analysis made certain assumptions about capacity factors. Because a capacity

factor threshold is used as one of the criteria for inclusion in the set of “marginal” generators,

an annual capacity factor must be estimated for every generator in the WECC. This calculation

introduces additional nuance due to data limitations. EIA Form 923 records provide information on

annual fuel consumption [MMBtu] and annual net generation [MWh], and each include, as unique

identifiers, a Plant ID, a prime mover, and a fuel type. However, each record can represent more
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than one physical generator at a single plant, so long as they have identical prime movers and fuel.

For example, a combined cycle gas turbine (CCGT) generator will be split into two different Form

923 records, one for the combustion turbine (CT) prime mover and the other for the steam turbine

(CA) prime mover. However, if a single plant has multiple CCGTs, the CT and CA components for

each will be aggregated in their respective Form 923 records.

EIA Form 860 reports contain the set of generating units in operation during each year. Each

record for a generator contains its plant code, nameplate capacity, prime mover, and primary fuel

type. However, each generating unit may consume several different fuels and have corresponding

records in Form 923 that do not align with their primary fuel type. As there is not a set of unique

identifiers to merge Form 860 and Form 923 records, approximations must be made in order to

estimate the capacity factor associated with each Form 923 record.

For the most part, the original WCI analysis aggregates nameplate capacity values for all gener-

ating units in Form 860 based on their Plant ID. By similarly aggregating the annual net generation

values of all Form 923 records with that Plant ID, an annual capacity factor can be estimated for

that plant. However, some plants contain multiple generating units with different operating regimes

and, if separated, different annual capacity factors. This is particularly important for plants that

have a natural gas-fired component and a coal-fired component. If combined, the full plant may have

a lower annual capacity factor, thus classifying it as “marginal.” If separated, the coal-fired units

may have a higher capacity factor than the natural gas-fired units. To remedy this, the original WCI

analysis split generating units at a single plant based on their primary fuel type. This modification

was made for some but not all plants that burned both coal and natural gas, and the criteria for

determining whether disaggregation was warranted or not are unclear. Further, attribution of fuel

oil (DFO) generation (Form 923) records to either the coal or natural gas component of a plant was

inconsistent in the WCI workbook.

Using this methodological foundation, we systematically replicate the results of the legacy analy-

sis, update the data to reflect more recent years and test sensitivity of these results. For the purposes

of this analysis, we omit Canadian plants due to data availability and solely look at plants that re-

port to EIA. For the time horizon of 2006-2008, the original WCI analysis estimates the marginal

emissions factor for plants in the United States portion of the WECC to be 0.4336 tCO2e/MWh.

Additionally, in order to avoid manual adjustments, we systematically identify every plant that

contains both a primarily coal-fired and a primarily natural gas-fired generator (according to Form

860). The Form 923 records for these plants are partitioned into a gas-fired component and a coal-

fired component, for which annual capacity factors are evaluated separately. Any fuel oil (DFO)

Form 923 records are allocated to the gas-fired component.
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Figure C.5: Share of generation classified as “marginal” according to the legacy CARB methodology
for the time horizons 2006-2008 (left) and 2016-2018 (right).

C.6 Default emissions factor supplemental figures

As Figure C.6 illustrates, the estimated emissions factor can vary substantially depending on what

capacity factor threshold is selected to indicate a generator is “marginal.” The threshold selected in

the original CARB analysis (60%) produces an answer that is near a minimum for that time horizon,

but not for the more recent time horizon.

Figure C.6: Marginal emissions factors as estimated using EIA data and employing the capacity
factor threshold method used to support the currently adopted default emissions factor.

Thus, we conclude that the legacy method for estimating emissions associated with unspecified

electricity imports is based on outdated data and can be sensitive to the selected capacity factor
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threshold. Although using a capacity factor threshold as a proxy for identifying marginal dispatch

is intrinsically unreliable, it appears that higher default emissions factors would be obtained across

a wide range of capacity factor thresholds that could reasonably be considered. This suggests there

may be room for improvement in the calculation of the default emissions factor.
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